Science Wiki
Advertisement

Αλγέβρειος Χώρος Lie

Algebra Space


Mathematical-Spaces-01-goog

Μαθηματικά Γεωμετρία Γραμμική Άλγεβρα
Γεωμετρικός Χώρος Ευκλείδειος Χώρος Χώρος Minkowski Χώρος Riemann Χώρος Lobachevsky
Μαθηματικός Χώρος Τοπολογικός Χώρος Διανυσματικός Χώρος Μετρικός Χώρος Χώρος Hilbert

Geometry-Models-01-goog

Ελλειπτικός Χώρος Ευκλείδειος Χώρος Υπερβολικός Χώρος

- Ένας Μαθηματικός Χώρος.

Ετυμολογία[]

Η ονομασία "Άλγεβρα" σχετίζεται ετυμολογικά με την λέξη "[[]]".

Εισαγωγή[]

In mathematics, a Lie algebra is a vector space together with a non-associative multiplication called "Lie bracket" .

When an algebraic product is defined on the space, the Lie bracket is the commutator

.

Lie algebras were introduced to study the concept of infinitesimal transformations. Hermann Weyl introduced the term "Lie algebra" (after Sophus Lie) in the 1930s. In older texts, the name "infinitesimal group" is used.

Lie algebras are closely related to Lie groups which are groups that are also smooth manifolds, with the property that the group operations of multiplication and inversion are smooth maps. Any Lie group gives rise to a Lie algebra. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to covering (Lie's third theorem). This correspondence between Lie groups and Lie algebras allows one to study Lie groups in terms of Lie algebras.

Definitions[]

A Lie algebra is a vector space over some field F together with a binary operation called the Lie bracket that satisfies the following axioms:

for all scalars a, b in F and all elements x, y, z in .
for all x in .
  • The Jacobi identity,
for all x, y, z in .

Using bilinearity to expand the Lie bracket and using alternativity shows that for all elements x, y in , showing that bilinearity and alternativity together imply

[x,y] = −[y,x],
for all elements x, y in . If the field's characteristic is not 2 then anticommutativity implies alternativity.[1]

Υποσημειώσεις[]

  1. Humphreys p. 1

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement