Αιτιακή Δομή
- Μία Μαθηματική Δομή.
Ετυμολογία[]
Η ονομασία "Δομή" σχετίζεται ετυμολογικά με την λέξη "δόμηση".
Εισαγωγή[]
In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.
In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold.
The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events.
Minkowski spacetime is a simple example of a Lorentzian manifold. The causal relationships between points in Minkowski spacetime take a particularly simple form since the space is flat.
The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
Discussions of the causal structure for such manifolds must be phrased in terms of smooth curves joining pairs of points.
Conditions on the tangent vectors of the curves then define the causal relationships.
Μια Καμπύλη της οποίας το Εφαπτόμενο Διάνυσμα είναι πάντοτε χρονοειδές ή φωτοειδές καλείται αιτιακή καμπύλη.
Δύο γεγονότα που μπορούν να συνδεθούν μέσω μιας αιτιακής καμπύλης αποκαλούνται αιτιακά συνδεδεμένα.
Υποσημειώσεις[]
Εσωτερική Αρθρογραφία[]
- Μαθηματικό Δόμημα
- Αιτιακή Συνθήκη (= Causality conditions)
- Αιτιοκρατία
- αιτία
- συγχρονικότητα ( = Synchronicity)
Βιβλιογραφία[]
Ιστογραφία[]
Κίνδυνοι Χρήσης |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν
- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)