Απειροστική Στροφή

- Ένας μετασχηματισμός.

## Ετυμολογία

Η ονομασία "Απειροστικός" σχετίζεται ετυμολογικά με την λέξη "άπειρο".

## Εισαγωγή

Infinitesimal rotations commute and every finite rotation is the composition of infinitesimal rotations.

An infinitesimal rotation may be written as

where:
a is an infinitesimal "angle" and
A is a combination of generators.

The matrices in the Lie algebra are not themselves rotations; the skew-symmetric matrices are derivatives, proportional differences of rotations. An actual "differential rotation", or infinitesimal rotation matrix has the form

where dθ is vanishingly small.

These matrices do not satisfy all the same properties as ordinary finite rotation matrices under the usual treatment of infinitesimals

(Note that the infinitesimal transformation may not correspond to an inversion, since inversion is a discontinuous process)

## Ανάλυση

Skew-symmetric matrices over the field of real numbers form the tangent space to the real orthogonal group at the identity matrix; formally, the special orthogonal Lie algebra. In this sense, then, skew-symmetric matrices can be thought of as infinitesimal rotations.

Another way of saying this is that the space of skew-symmetric matrices forms the Lie algebra of the Lie group The Lie bracket on this space is given by the commutator:

It is easy to check that the commutator of two skew-symmetric matrices is again skew-symmetric:

The matrix exponential of a skew-symmetric matrix is then an orthogonal matrix :

The image of the exponential map of a Lie algebra always lies in the connected component of the Lie group that contains the identity element. In the case of the Lie group this connected component is the special orthogonal group consisting of all orthogonal matrices with determinant 1. So will have determinant +1.

Moreover, since the exponential map of a connected compact Lie group is always surjective, it turns out that every orthogonal matrix with unit determinant can be written as the exponential of some skew-symmetric matrix.

In the particular important case of dimension the exponential representation for an orthogonal matrix reduces to the well-known polar form of a complex number of unit modulus.

Indeed, if a special orthogonal matrix has the form

with .

Therefore, putting and it can be written

which corresponds exactly to the polar form of a complex number of unit modulus.

The exponential representation of an orthogonal matrix of order can also be obtained starting from the fact that in dimension any special orthogonal matrix can be written as where is orthogonal and S is a block diagonal matrix with blocks of order 2, plus one of order 1 if is odd; since each single block of order 2 is also an orthogonal matrix, it admits an exponential form.

Correspondingly, the matrix S writes as exponential of a skew-symmetric block matrix of the form above, so that exponential of the skew-symmetric matrix

Conversely, the surjectivity of the exponential map, together with the above-mentioned block-diagonalization for skew-symmetric matrices, implies the block-diagonalization for orthogonal matrices.

## Ιστογραφία

https://math.wikia.org/wiki/Infinitesimal_rotations Infinitesimal_rotations, math.wikia.org]

Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.

Επίσης,
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)