Αστρική Εξέλιξις
- Είναι η Εξελικτική Διαδικασία των Αστέρων.
Ετυμολογία[]
Η ονομασία "Αστρική" σχετίζεται ετυμολογικά με την Λέξη "αστέρας".
Εισαγωγή[]
Οι αστέρες σχηματίζονται μέσα εκτεταμένες περιοχές με μεγαλύτερη πυκνότητα στο Διαστρικό Μέσο, αν και η πυκνότητα είναι ακόμη χαμηλότερη από το εσωτερικό ενός επίγειου θαλάμου κενού.
Αυτές οι περιοχές ονομάζονται Μοριακά Αστρικά Νέφη και αποτελούνται κυρίως από υδρογόνο, με περίπου 23-28% ήλιο και ένα μικρό ποσοστό βαρύτερα στοιχεία.
Ένα παράδειγμα μίας τέτοιας περιοχής σχηματισμού άστρων είναι το Νεφέλωμα του Ωρίωνα. [1] Δεδομένου ότι οι μεγάλοι αστέρες σχηματίζονται στα μοριακά νέφη, τα φωτίζουν έντονα. Μπορούν επίσης να ιονίσουν το υδρογόνο, δημιουργώντας μία περιοχή H II.
Σχηματισμός Πρωτοαστέρα[]
Η δημιουργία ενός αστέρα αρχίζει με μια βαρυτική αστάθεια στο εσωτερικό ενός Αστρικού Μοριακού Νέφους, που συχνά προκαλείται από τα κρουστικά κύματα ενός Υπερκαινοφανή Αστέρα (μαζική αστρική έκρηξη) ή τη σύγκρουση δύο Γαλαξιών (όπως σε έναν αστρογόνο Γαλαξία).
Μόλις μια περιοχή έχει φθάσει σε επαρκή πυκνότητα ύλης για να ικανοποιήσει τα κριτήρια για τη δημιουργία της αστάθειας Τζιν αρχίζει να καταρρέει κάτω από τη δύναμη της δικής του βαρύτητας .
Καθώς το νέφος καταρρέει, μεμονωμένες συγκεντρώσεις της πυκνής σκόνης και του αερίου αποτελούν αυτό που είναι γνωστό ως σφαιρίδιο Bok. Καθώς ένα σφαιρίδιο καταρρέει και η πυκνότητα αυξάνει, η Βαρυτική Ενέργεια μετατρέπεται σε θερμότητα και η θερμοκρασία ανεβαίνει. Όταν το πρωταστρικό νέφος έχει φθάσει περίπου σε Υδροστατική Ισορροπία, ένας Πρωτοαστέρας σχηματίζεται στον πυρήνα. Αυτοί οι προ Κύριας Ακολουθίας αστέρες συχνά περιβάλλονται από ένα πρωτοπλανητικό δίσκο. Η περίοδος της βαρυτικής συστολής διαρκεί περίπου 10-15 εκατομμύρια χρόνια.
Οι πρωτοαστέρες που είναι μικρότεροι από 2 ηλιακές μάζες ονομάζονται αστέρες τύπου T Ταύρου, ενώ αυτοί με μεγαλύτερη μάζα είναι αστέρες Herbig AE/Be. Αυτά τα νεογέννητα αστέρια εκπέμπουν πίδακες αερίου κατά μήκος του άξονα περιστροφής τους, γεγονός που μπορεί να μειώσει τη στροφορμή του καταρρέοντος αστέρα και να δημιουργήσει μικρές περιοχές νέφωσης γνωστές ως αντικείμενα Herbig-Haro. Αυτοί οι πίδακες, σε συνδυασμό με την ακτινοβολία από κοντινά μεγάλα άστρα, μπορεί να βοηθήσει για να απομακρυνθεί το νέφος μέσα στο οποίο σχηματίστηκε το άστρο.
Κύρια Αστρική Ακολουθία[]
Οι αστέρες δαπανούν περίπου το 90% της διάρκειας της ζωής στη σύντηξη υδρογόνου που μετατρέπεται σε ήλιο σε υψηλή θερμοκρασία και υψηλή πίεση κοντά στον πυρήνα. Τέτοιοι Αστέρες λέγεται ότι είναι στην Κύρια Αστρική Ακολουθία και ονομάζονται Αστέρες Νάνοι.
Αρχίζοντας από την μηδέν-ηλικία, η αναλογία του ηλίου στον πυρήνα ενός αστέρα θα αυξάνεται σταθερά. Κατά συνέπεια, προκειμένου να διατηρηθεί το απαιτούμενο ρυθμό πυρηνικής σύντηξης στον πυρήνα, ο Αστέρας θα αυξήσει αργά τη θερμοκρασία και τη φωτεινότητά του. Στον Ήλιο, για παράδειγμα, εκτιμάται ότι έχει αυξηθεί σε φωτεινότητα κατά 40%, δεδομένου ότι έφθασε η κύρια ακολουθία από 4,6 δισεκατομμύρια χρόνια.[2]
Κάθε αστέρας δημιουργεί ένα Αστρικό Άνεμο σωματιδίων που προκαλεί μια συνεχή εκροή αερίου προς το διάστημα. Για τα περισσότερα αστέρια, το ποσό της μάζας χάνεται είναι αμελητέα. Ο Ήλιος χάνει 10-14 ηλιακές μάζες κάθε χρόνο,[3] ή περίπου το 0,01% της συνολικής μάζας του για όλη τη διάρκεια της ζωής του. Ωστόσο πολύ ογκώδη αστέρια μπορούν να χάσουν 10-7 έως 10-5 ηλιακές μάζες κάθε χρόνο, γεγονός που επηρεάζει σημαντικά την εξέλιξη τους.[4] Τα αστέρια που αρχίζουν με περισσότερες από 50 ηλιακές μάζες μπορεί να χάσει περισσότερο από το ήμισυ συνολικής μάζας τους κατά την παραμονή τους στην κύρια ακολουθία.[5]
Η χρονική διάρκεια που ένας Αστέρας δαπανά στην κύρια ακολουθία εξαρτάται πρωτίστως από την ποσότητα καυσίμου που έχει να συντήξει και το ρυθμό με τον οποίο συντήκει αυτό το καύσιμο, δηλαδή από την αρχική του μάζα και φωτεινότητα. Για τον Ήλιο, αυτό το διάστημα εκτιμάται ότι είναι περίπου 1010 χρόνια (10 δισεκατομμύρια έτη).
- Οι μεγάλοι Αστέρες καταναλώνουν τα καύσιμά τους ταχύτατα και είναι βραχύβιοι.
- Οι μικροι Αστέρες (που ονομάζεται Ερυθροί Νάνοι) καταναλώνουν τα καύσιμά τους με πολύ αργό ρυθμό και διαρκούν δεκάδες έως εκατοντάδες δισεκατομμύρια έτη. Στο τέλος της ζωής τους, θα γίνουν απλά αχνότερα και αχνότερα. Ωστόσο, δεδομένου ότι η διάρκεια ζωής αυτών των αστέρων είναι μεγαλύτερη από την τρέχουσα ηλικία του Σύμπαντος (13,7 δισ. έτη), δεν αναμένεται ερυθροί νάνοι να έχουν φθάσει ακόμη σε αυτό το στάδιο.
Εκτός από τη μάζα, το ποσοστό των στοιχείων που είναι βαρύτερα από το ήλιο μπορεί να διαδραματίσει σημαντικό ρόλο στην εξέλιξη των άστρων. Στην Αστρονομία όλα τα στοιχεία βαρύτερα από το ήλιο θεωρούνται «μέταλλα», και η συγκέντρωση αυτών των χημικών στοιχείων ονομάζεται μεταλλικότητα. Η μεταλλικότητα μπορεί να επηρεάσει τη διάρκεια που ένας αστέρας θα καταναλώσει τα καύσιμά του, ελέγχει το σχηματισμό των Μαγνητικών Πεδίων[6] και να τροποποιήσει τη δύναμη του αστρικού ανέμου. [7] Παλαιότερα, ο πληθυσμός αστέρων ΙΙ έχουν σημαντικά μικρότερη μεταλλικότητα από ότι οι νεότεροι, οι αστέρες πληθυσμού I, λόγω της σύνθεσης των μοριακών νεφών από τα οποία σχηματίζονται. (Με την πάροδο του χρόνου γίνονται αυτά τα σύννεφα εμπλουτίζονται όλο και περισσότερο με βαρύτερα στοιχεία, καθώς τα μεγαλύτερα αστέρια πεθαίνουν και απομακρύνουν τμήματα της ατμόσφαιράς τους.)
Μετά την κύρια ακολουθία[]
Καθώς Αστέρες με μάζα τουλάχιστον 0,4 ηλιακές μάζες εξαντλούν το υδρογόνο στον πυρήνα τους, τα εξωτερικά στρώματά τους επεκτείνονται σε μεγάλο βαθμό και γίνονται πιο δροσερά για να σχηματίσουν ένα Ερυθρό Γίγαντα.
Για παράδειγμα, σε περίπου 5 δισεκατομμύρια έτη, όταν ο Ήλιος θα είναι ένας ερυθρός γίγαντας, θα αναπτυχθεί σε μέγιστη ακτίνα περίπου 1 αστρονομική μονάδα (150 εκατομμύρια χιλιόμετρα), 250 φορές το σημερινό του μέγεθός του. Ως γίγας, ο Ήλιος θα χάσει περίπου το 30% της τρέχουσας μάζας του. [2] [8]
Σε ένα ερυθρό γίγαντα με μάζα μέχρι 2,25 ηλιακές μάζες, η σύντηξη υδρογόνου προχωρά σε ένα κέλυφος-στρώμα που περιβάλλει τον πυρήνα. [9] Τελικά, ο πυρήνας συμπιέζεται αρκετά για να ξεκινήσει σύντηξη ηλίου, και το αστέρι τώρα σταδιακά συρρικνώνεται σε ακτίνα και αυξάνει τη θερμοκρασία της επιφάνειάς του. Για τα μεγαλύτερα αστέρια, η περιοχή πυρήνα μεταβαίνει απευθείας από τη σύντηξη υδρογόνο στη σύντηξη ηλίου.
Αφού το άστρο έχει καταναλώσει το ήλιο στον πυρήνα, η σύντηξη συνεχίζεται σε ένα κέλυφος γύρω από ένα καυτό πυρήνα άνθρακα και οξυγόνου. Το αστέρι στη συνέχεια ακολουθεί μια εξελικτική πορεία που είναι παράλληλη με την αρχική φάση του ερυθρού γίγαντα, αλλά σε υψηλότερη θερμοκρασία της επιφάνειας.
Ογκώδη άστρα[]
Κατά τη διάρκεια της φάσης καύσης του ηλίου, τα αστέρια με πολύ υψηλή, δηλαδή με μάζα μεγαλύτερη από εννέα ηλιακές μάζες θα επεκταθούν για να σχηματίσουν ερυθρούς υπεργίγαντες. Μόλις αυτό το καύσιμο έχει εξαντληθεί στον πυρήνα, μπορούν να συνεχίσουν να συτήκουν στοιχεία βαρύτερα από το ήλιο.
Ο πυρήνας συστέλλεται έως ότου η θερμοκρασία και η πίεση να είναι επαρκείς για να συντήξουν άνθρακα. Η διαδικασία αυτή συνεχίζεται, με τα διαδοχικά στάδιά της να τροφοδοτούνται από νέον, οξυγόνο και πυρίτιο. Κοντά στο τέλος της ζωής του αστεριού, η σύντηξη μπορεί να συμβεί κατά μήκος μιας σειράς κελυφών εντός του αστέρα, προσδίδοντάς του μια μορφή κρεμμυδιού. Κάθε κέλυφος συντήκει ένα διαφορετικό στοιχείο, με τις εξώτερες περιοχές να συντήκουν υδρογόνο, το επόμενο ήλιο, και ούτω καθ 'εξής. .[10]
Το τελικό στάδιο επιτυγχάνεται όταν το αστέρι αρχίζει την παραγωγή σιδήρου. Επειδή οι πυρήνες σιδήρου είναι πιο στενά συνδεδεμένοι από κάθε βαρύτερους πυρήνες, αν συντήκονταν δεν θα απελευθερωνόταν ενέργεια-η διαδικασία θα ήταν, αντίθετα, να καταναλωθεί ενέργεια. Ομοίως, δεδομένου ότι είναι πιο στενά συνδεδεμένοι από όλους τους ελαφρύτερους πυρήνες, η ενέργεια δεν μπορεί να απελευθερωθεί από την σχάση. [9] Σε σχετικά παλιά, πολύ ογκώδη αστέρια, ένας μεγάλος πυρήνας αδρανούς σιδήρου θα συγκεντρωθεί στο κέντρο του αστεριού. Τα βαρύτερα στοιχεία σε αυτά τα αστέρια μπορούν να συνεχίσουν την πορεία τους προς την επιφάνεια, σχηματίζοντας αντικείμενα γνωστά ως αστέρες Wolf-Rayet που έχουν ένα ισχυρό αστρικό άνεμο που απομακρύνει την εξωτερική ατμόσφαιρα.
Αστρική Κατάρρευση[]
Ένα εξελιγμένο, μέσου μεγέθους αστέρι θα απομακρύνει πλέον τα εξωτερικά στρώματά του ως ένα Πλανητικό Νεφέλωμα. Αν αυτό που μένει μετά την απομάκρυνση της εξωτερικής ατμόσφαιρας έχει μάζα λιγότερη από 1,4 ηλιακές μάζες, συρρικνώνεται σε ένα σχετικά μικρό αντικείμενο (περίπου το μέγεθος της Γης) που δεν είναι αρκετά ογκώδες για να λάβει χώρα περαιτέρω συμπίεση. Αυτό το αντικείμενο είναι γνωστό ως Λευκός Νάνος. [11] Η ύλη εκφυλισμένων ηλεκτρονίων μέσα σε ένα λευκό νάνο δεν είναι πλέον πλάσμα, ακόμα κι αν αστέρια γενικά αναφέρονται ως σφαίρες πλάσματος. Οι λευκοί νάνοι τελικά θα εξασθενίσουν σε μαύρους νάνους σε ένα πολύ μεγάλο χρονικό διαστήμα.
Στα μεγαλύτερα αστέρια, η σύντηξη συνεχίζεται μέχρι ο πυρήνας σιδήρου να έχει αυξηθεί σε μάζα τόσο πού (πάνω από 1,4 ηλιακές μάζες), που δεν μπορεί πλέον να στηρίξει τη δική του μάζα. Αυτός ο πυρήνας θα καταρρεύσει ξαφνικά, καθώς τα ηλεκτρόνιά του οδηγούνται στα πρωτόνιά του, σχηματίζοντας νετρόνια και νετρίνα μέσα σε μια έκρηξη αντίστροφη της διάσπασης βήτα, ή της σύλληψης ηλεκτρονίων.
Το κρουστικό κύμα που σχηματίζεται από αυτήν την ξαφνική κατάρρευση προκαλεί το υπόλοιπο άστρο να εκραγεί ως Yπερκαινοφανής Aστέρας. Οι υπερκαινοφανείς είναι τόσο φωτεινοί ώστε να μπορούν να επισκιάσουν για λίγο ολόκληρο το γαλαξία που βρίσκεται ο αστέρας. Όταν εκδηλώνονται εντός του Γαλαξία μας, οι υπερκαινοφανείς έχουν ιστορικά παρατηρηθεί με γυμνό οφθαλμό από τους παρατηρητές ως «νέοι αστέρες», όπου δεν υπήρχαν καθόλου πριν. <ref name="supernova">
Η περισσότερη από την ύλη του αστέρα απομακρύνεται από την έκρηξη (και σχηματίζει νεφελώματα, όπως το Νεφέλωμα του Καρκίνου)[12] και αυτό που μένει θα είναι ένας Νετρονικός Αστέρας (ο οποίος εκδηλώνεται ενίοτε ως πάλσαρ ή με εκρήξεις ακτίνων Χ) ή, στην περίπτωση των μεγαλύτερων αστέρων (αρκετά μεγάλα για να αφήσει ένα αστρικό υπόλειμμα μεγαλύτερο από περίπου 4 ηλιακές μάζες), μια Μελανή Οπή.
Σε έναν αστέρα νετρονίων, η ύλη είναι σε μια κατάσταση γνωστή ως Ύλη Εκφυλισμένων Νετρονίων, με μια πιο εξωτική μορφή του εκφυλισμένη ύλη, την ύλη QCD, που ενδεχομένως υπάρχει μέσα στον πυρήνα. Μέσα σε μια μαύρη τρύπα η ύλη είναι σε μια κατάσταση που δεν είναι σήμερα κατανοητή.
Τα εκτιναγμένα εξωτερικά στρώματα του αστέρα που "πεθαίνει" περιλαμβάνουν βαρέα στοιχεία που μπορούν να ανακυκλωθούν κατά τη διάρκεια της δημιουργίας νέων αστέρων. Αυτά τα βαρέα στοιχεία είναι που επιτρέπουν το σχηματισμό βραχωδών πλανητών. Τα υπολείμματα Υπερκαινοφανών Αστέρων και ο Αστρικός Άνεμος από μεγάλους αστέρες παίζουν σημαντικό ρόλο στη διαμόρφωση του διαστρικό ενδιάμεσου. [12]
Υποσημειώσεις[]
- ↑ Woodward, P. R. (1978). "Theoretical models of star formation". Annual review of astronomy and astrophysics 16 (1): 555–584. doi: . Bibcode: 1978ARA&A..16..555W.
- ↑ 2,0 2,1 Sackmann, I. J.; Boothroyd, A. I.; Kraemer, K. E. (1993). "Our Sun. III. Present and Future". Astrophysical Journal 418: 457. doi: . Bibcode: 1993ApJ...418..457S.
- ↑ Wood, B. E.; Müller, H.-R.; Zank, G. P.; Linsky, J. L. (2002). "Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity". The Astrophysical Journal 574 (1): 412–425. doi: . Bibcode: 2002ApJ...574..412W. http://www.journals.uchicago.edu/doi/full/10.1086/340797.
- ↑ de Loore, C. (1977). "Evolution of massive stars with mass loss by stellar wind". Astronomy and Astrophysics 61 (2): 251–259. Bibcode: 1977A&A....61..251D.
- ↑ The evolution of stars between 50 and 100 times the mass of the Sun. Royal Greenwich Observatory. http://www.nmm.ac.uk/server/show/conWebDoc.727. Ανακτήθηκε την 2006-09-07.
- ↑ Pizzolato, N.; Ventura, P.; D'Antona, F.; Maggio, A.; Micela, G.; Sciortino, S. (2001). "Subphotospheric convection and magnetic activity dependence on metallicity and age: Models and tests". Astronomy & Astrophysics 373 (2): 597–607. doi: . Bibcode: 2001A&A...373..597P. http://www.edpsciences.org/articles/aa/abs/2001/26/aah2701/aah2701.html.
- ↑ Mass loss and Evolution. UCL Astrophysics Group. 2004-06-18. Αρχειοθετήθηκε από το πρωτότυπο στις 2004-11-22. http://web.archive.org/web/20041122143115/http://www.star.ucl.ac.uk/groups/hotstar/research_massloss.html. Ανακτήθηκε την 2006-08-26.
- ↑ Schröder, K.-P. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386 (1): 155. doi: . Bibcode: 2008MNRAS.386..155S. Δείτε επίσηςΠρότυπο:Cite news
- ↑ 9,0 9,1 Hinshaw, Gary (2006-08-23). The Life and Death of Stars. NASA WMAP Mission. http://map.gsfc.nasa.gov/m_uni/uni_101stars.html. Ανακτήθηκε την 2006-09-01.
- ↑ What is a star?. Royal Greenwich Observatory. http://www.nmm.ac.uk/server/show/conWebDoc.299/. Ανακτήθηκε την 2006-09-07.
- ↑ Liebert, J. (1980). "White dwarf stars". Annual review of astronomy and astrophysics 18 (2): 363–398. doi: . Bibcode: 1980ARA&A..18..363L.
- ↑ 12,0 12,1 Σφάλμα παραπομπής: Μη έγκυρη ετικέτα
<ref>
· δεν δίνεται κείμενο για παραπομπές με όνομαsupernova
Εσωτερική Αρθρογραφία[]
- Αστέρας
- Αστροφυσική
- Διάγραμμα Hertzsprung-Russell
- Βιολογική Εξέλιξη
- Γεωλογική Εξέλιξη
- Συμπαντική Εξέλιξη
Βιβλιογραφία[]
Ιστογραφία[]
Κίνδυνοι Χρήσης |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν
- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)