Science Wiki
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Γραμμή 17: Γραμμή 17:
   
 
==[[Εισαγωγή]]==
 
==[[Εισαγωγή]]==
  +
== Αστρική εξέλιξη ==
  +
Οι αστέρες σχηματίζονται μέσα εκτεταμένες περιοχές με μεγαλύτερη πυκνότητα στο διαστρικό μέσο, αν και η πυκνότητα είναι ακόμη χαμηλότερη από το εσωτερικό ενός επίγειου θαλάμου κενού. Αυτές οι περιοχές ονομάζονται [[νεφέλωμα|μοριακά νέφη]] και αποτελούνται κυρίως από [[υδρογόνο]], με περίπου 23-28% ήλιο και ένα μικρό ποσοστό βαρύτερα στοιχεία. Ένα παράδειγμα μίας τέτοιας περιοχής σχηματισμού άστρων είναι το [[νεφέλωμα του Ωρίωνα]]. <ref>
  +
{{cite journal
  +
| last=Woodward | first=P. R.
  +
| title=Theoretical models of star formation
  +
| journal=Annual review of astronomy and astrophysics
  +
| year=1978 | volume=16
  +
| issue=1 | pages=555–584 | doi = 10.1146/annurev.aa.16.090178.003011
  +
| bibcode=1978ARA&A..16..555W
  +
}}</ref>
  +
Δεδομένου ότι τα μεγάλα αστέρια σχηματίζονται στα μοριακά νέφη, φωτίζουν έντονα αυτά τα σύννεφα. Μπορούν επίσης να [[ιόν|ιονίσουν]] το υδρογόνο, δημιουργώντας μία περιοχή H II.
  +
  +
=== Σχηματισμός πρωτοαστέρα ===
  +
{{Κύριο άρθρο|σχηματισμός αστέρων}}
  +
  +
Η δημιουργία ενός αστεριού ξεκινά με μια βαρυτική αστάθεια στο εσωτερικό ενός μοριακού νέφους, που συχνά προκαλείται από τα κρουστικά κύματα ενός [[υπερκαινοφανής αστέρας|υπερκαινοφανή]] (μαζική αστρική έκρηξη) ή τη σύγκρουση δύο [[γαλαξίες|γαλαξιών]] (όπως σε έναν αστρογόνο γαλαξία). Μόλις μια περιοχή έχει φθάσει σε επαρκή πυκνότητα ύλης για να ικανοποιήσει τα κριτήρια για τη δημιουργία της αστάθειας Τζιν αρχίζει να καταρρέει κάτω από τη δύναμη της δικής του βαρύτητας .<ref>{{cite book
  +
| first=Michael David | last=Smith | year=2004
  +
| title=The Origin of Stars | publisher=Imperial College Press
  +
| isbn=1860945015 | pages=57–68 }}</ref>
  +
  +
Καθώς το νέφος καταρρέει, μεμονωμένες συγκεντρώσεις της πυκνής σκόνης και του αερίου αποτελούν αυτό που είναι γνωστό ως σφαιρίδιο του Bok. Καθώς ένα σφαιρίδιο καταρρέει και η πυκνότητα αυξάνει, η βαρυτική ενέργεια μετατρέπεται σε θερμότητα και η θερμοκρασία ανεβαίνει. Όταν το πρωταστρικό νέφος έχει φτάσει περίπου σε υδροστατική ισορροπία, ένας [[πρωτοαστέρας]] σχηματίζεται στον πυρήνα<ref>{{cite web
  +
| last = Seligman | first = Courtney
  +
| url = http://courtneyseligman.com/text/stars/starevol2.htm
  +
| archiveurl = http://web.archive.org/web/20080623190408/http://courtneyseligman.com/text/stars/starevol2.htm
  +
| archivedate = 2008-06-23
  +
| title = Slow Contraction of Protostellar Cloud | work=Self-published
  +
| accessdate = 2006-09-05 }}</ref>. Αυτοί οι προ Κύριας Ακολουθίας αστέρες συχνά περιβάλλονται από ένα [[Πρωτοπλανητικός δίσκος|πρωτοπλανητικό δίσκο]]. Η περίοδος της βαρυτικής συστολής διαρκεί περίπου 10-15 εκατομμύρια χρόνια.
  +
  +
Οι πρωτοαστέρες που είναι μικρότεροι από 2 ηλιακές μάζες ονομάζονται [[αστέρες τύπου T Ταύρου]], ενώ αυτοί με μεγαλύτερη μάζα είναι [[αστέρες Herbig AE/Be]]. Αυτά τα νεογέννητα αστέρια εκπέμπουν πίδακες αερίου κατά μήκος του άξονα περιστροφής τους, γεγονός που μπορεί να μειώσει τη [[στροφορμή]] του καταρρέοντος αστέρα και να δημιουργήσει μικρές περιοχές νέφωσης γνωστές ως [[αντικείμενα Herbig-Haro]] .<ref>{{cite conference
  +
| author=Bally, J.; Morse, J.; Reipurth, B. | year = 1996
  +
| title=The Birth of Stars: Herbig-Haro Jets, Accretion and Proto-Planetary Disks
  +
| booktitle = Science with the Hubble Space Telescope - II. Proceedings of a workshop held in Paris, France, December 4–8, 1995
  +
| editor = Piero Benvenuti, F.D. Macchetto, and Ethan J. Schreier
  +
| publisher = Space Telescope Science Institute | page = 491
  +
| bibcode =1996swhs.conf..491B
  +
}}</ref><ref name=smith04>{{cite book
  +
| first=Michael David | last=Smith
  +
| title=The origin of stars | page=176 | year=2004
  +
| isbn=1860945015
  +
| publisher=Imperial College Press
  +
}}</ref> Αυτοί οι πίδακες, σε συνδυασμό με την ακτινοβολία από κοντινά μεγάλα άστρα, μπορεί να βοηθήσει για να απομακρυνθεί το νέφος μέσα στο οποίο σχηματίστηκε το άστρο. <ref>{{cite news
  +
| first=Tom | last=Megeath | date=May 11, 2010
  +
| title=Herschel finds a hole in space
  +
| url=http://www.esa.int/esaCP/SEMFEAKPO8G_index_0.html
  +
| publisher=ESA | accessdate=2010-05-17 }}</ref>
  +
  +
=== Κύρια ακολουθία ===
  +
{{Κύριο|Κύρια ακολουθία}}
  +
  +
Οι αστέρες δαπανούν περίπου το 90% της διάρκειας της ζωής στη [[πυρηνική σύντηξη|σύντηξη υδρογόνου]] που μετατρέπεται σε ήλιο σε υψηλή θερμοκρασία και υψηλή πίεση κοντά στον πυρήνα. Τέτοια αστέρια λέγεται ότι είναι στην [[κύρια ακολουθία]] και ονομάζονται αστέρια νάνοι. Ξεκινώντας από την μηδέν-ηλικία στην κύρια ακολουθία, η αναλογία του ηλίου στον πυρήνα ενός αστέρα θα αυξάνεται σταθερά. Κατά συνέπεια, προκειμένου να διατηρηθεί το απαιτούμενο ρυθμό πυρηνικής σύντηξης στον πυρήνα, το αστέρι θα αυξήσει αργά τη θερμοκρασία και τη φωτεινότητά του. <ref>{{cite journal
  +
| author= Mengel, J. G.; Demarque, P.; Sweigart, A. V.; Gross, P. G.
  +
| title=Stellar evolution from the zero-age main sequence
  +
| journal=Astrophysical Journal Supplement Series
  +
| year=1979 | volume=40 | pages=733–791
  +
| bibcode=1979ApJS...40..733M | doi = 10.1086/190603
  +
}}</ref> Στον Ήλιο, για παράδειγμα, εκτιμάται ότι έχει αυξηθεί σε φωτεινότητα κατά 40%, δεδομένου ότι έφτασε η κύρια ακολουθία από 4,6 δισεκατομμύρια χρόνια.<ref name=sun_future />
  +
  +
Κάθε αστέρι δημιουργεί ένα [[αστρικός άνεμος|αστρικό άνεμο]] σωματιδίων που προκαλεί μια συνεχή εκροή αερίου προς το διάστημα. Για τα περισσότερα αστέρια, το ποσό της μάζας χάνεται είναι αμελητέα. Ο Ήλιος χάνει 10<sup>-14</sup> ηλιακές μάζες κάθε χρόνο,<ref>{{cite journal
  +
| author=Wood, B. E.; Müller, H.-R.; Zank, G. P.; Linsky, J. L.
  +
| title=Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity
  +
| journal=The Astrophysical Journal | year=2002
  +
| volume=574 | issue=1 | pages=412–425
  +
| url=http://www.journals.uchicago.edu/doi/full/10.1086/340797 | doi = 10.1086/340797 | bibcode=2002ApJ...574..412W
  +
|arxiv = astro-ph/0203437 }}</ref> ή περίπου το 0,01% της συνολικής μάζας του για όλη τη διάρκεια της ζωής του. Ωστόσο πολύ ογκώδη αστέρια μπορούν να χάσουν 10<sup>-7</sup> έως 10<sup>-5</sup> ηλιακές μάζες κάθε χρόνο, γεγονός που επηρεάζει σημαντικά την εξέλιξη τους.<ref>{{cite journal
  +
| last=de Loore | first=C.
  +
| coauthors=de Greve, J. P.; Lamers, H. J. G. L. M.
  +
| title=Evolution of massive stars with mass loss by stellar wind
  +
| journal=Astronomy and Astrophysics | year=1977 | volume=61
  +
| issue=2 | pages=251–259
  +
| bibcode=1977A&A....61..251D }}</ref> Τα αστέρια που αρχίζουν με πάνω από 50 ηλιακές μάζες μπορεί να χάσει πάνω από το ήμισυ συνολικής μάζας τους κατά την παραμονή τους στην κύρια ακολουθία.<ref>{{cite web
  +
| url = http://www.nmm.ac.uk/server/show/conWebDoc.727
  +
| title = The evolution of stars between 50 and 100 times the mass of the Sun
  +
| publisher = Royal Greenwich Observatory
  +
| accessdate = 2006-09-07 }}</ref>
  +
  +
Η χρονική διάρκεια που ένα αστέρι δαπανά στην κύρια ακολουθία εξαρτάται πρωτίστως από την ποσότητα καυσίμου που έχει να συντήξει και το ρυθμό με τον οποίο συντήκει αυτό το καύσιμο, δηλαδή από την αρχική του μάζα και φωτεινότητα. Για τον Ήλιο, αυτό το διάστημα εκτιμάται ότι είναι περίπου 10<sup>10</sup> χρόνια (10 δισεκατομμύρια χρόνια). Τα μεγάλα αστέρια καταναλώνουν τα καύσιμά τους πολύ γρήγορα και είναι βραχύβια. Τα μικρά αστέρια (που ονομάζεται [[ερυθρός νάνος|κόκκινο νάνοι]]) καταναλώνουν τα καύσιμά τους με πολύ αργό ρυθμό και διαρκούν δεκάδες έως εκατοντάδες δισεκατομμύρια χρόνια. Στο τέλος της ζωής τους, θα γίνουν απλά αχνότερα και αχνότερα. [2] Ωστόσο, δεδομένου ότι η διάρκεια ζωής αυτών των αστέρων είναι μεγαλύτερη από την τρέχουσα ηλικία του σύμπαντος (13,7 δισ. χρόνια), δεν αναμένεται ερυθροί νάνοι να έχουν φτάσει ακόμα σε αυτό το στάδιο.
  +
  +
Εκτός από τη μάζα, το ποσοστό των στοιχείων που είναι βαρύτερα από το ήλιο μπορεί να διαδραματίσει σημαντικό ρόλο στην εξέλιξη των άστρων. Στην αστρονομία όλα τα στοιχεία βαρύτερα από το ήλιο θεωρούνται «μέταλλα», και η συγκέντρωση αυτών των χημικών στοιχείων ονομάζεται [[μεταλλικότητα]]. Η μεταλλικότητα μπορεί να επηρεάσει τη διάρκεια που ένα αστέρι θα κάψει τα καύσιμά του, ελέγχει το σχηματισμό των [[μαγνητικό πεδίο|μαγνητικών πεδίων]]<ref>{{cite journal
  +
| author=Pizzolato, N.; Ventura, P.; D'Antona, F.; Maggio, A.; Micela, G.; Sciortino, S.
  +
| title=Subphotospheric convection and magnetic activity dependence on metallicity and age: Models and tests
  +
| journal=Astronomy & Astrophysics
  +
| year=2001 | volume=373
  +
| issue=2 | pages=597–607
  +
| url=http://www.edpsciences.org/articles/aa/abs/2001/26/aah2701/aah2701.html
  +
| doi=10.1051/0004-6361:20010626
  +
| bibcode=2001A&A...373..597P}}</ref> και να τροποποιήσει τη δύναμη του αστρικού ανέμου. <ref>{{cite web
  +
| date = 2004-06-18
  +
| url = http://www.star.ucl.ac.uk/groups/hotstar/research_massloss.html
  +
| archiveurl = http://web.archive.org/web/20041122143115/http://www.star.ucl.ac.uk/groups/hotstar/research_massloss.html
  +
| archivedate = 2004-11-22
  +
| title = Mass loss and Evolution | publisher = UCL Astrophysics Group
  +
| accessdate = 2006-08-26 }}</ref> Παλαιότερα, ο πληθυσμός αστέρων ΙΙ έχουν σημαντικά μικρότερη μεταλλικότητα από ό, τι οι νεότεροι, οι αστέρες πληθυσμού I, λόγω της σύνθεσης των μοριακών νεφών από τα οποία σχηματίζονται. (Με την πάροδο του χρόνου γίνονται αυτά τα σύννεφα εμπλουτίζονται όλο και περισσότερο με βαρύτερα στοιχεία, καθώς τα μεγαλύτερα αστέρια πεθαίνουν και απομακρύνουν τμήματα της ατμόσφαιράς τους.)
  +
  +
=== Μετά την κύρια ακολουθία ===
  +
{{Κύριο|Ερυθρός γίγαντας}}
  +
  +
Καθώς αστέρια με μάζα τουλάχιστον 0,4 ηλιακές μάζες εξατλούν το υδρογόνο στον πυρήνα τους, τα εξωτερικά στρώματά τους επεκτείνονται σε μεγάλο βαθμό και γίνονται πιο δροσερά για να σχηματίσουν ένα [[ερυθρός γίγαντας|κόκκινο γίγαντα]]. Για παράδειγμα, σε περίπου 5 δισεκατομμύρια χρόνια, όταν ο [[Ήλιος]] θα είναι ένας ερυθρός γίγαντας, θα αναπτυχθεί σε μέγιστη ακτίνα περίπου 1 [[αστρονομική μονάδα]] (150 εκατομμύρια χιλιόμετρα), 250 φορές το σημερινό του μέγεθός του. Ως γίγαντας, ο Ήλιος θα χάσει περίπου το 30% της τρέχουσας μάζας του. <ref name="sun_future">{{cite journal | author=Sackmann, I. J.; Boothroyd, A. I.; Kraemer, K. E.
  +
| title=Our Sun. III. Present and Future | page=457
  +
| journal=Astrophysical Journal | year=1993 | volume=418
  +
| bibcode=1993ApJ...418..457S | doi = 10.1086/173407}}</ref>
  +
<ref name="sun_future_schroder">{{cite journal | first=K.-P. | last=Schröder
  +
| coauthors=Smith, Robert Connon | year=2008
  +
| title=Distant future of the Sun and Earth revisited
  +
| doi=10.1111/j.1365-2966.2008.13022.x
  +
| journal=Monthly Notices of the Royal Astronomical Society | volume = 386 | issue=1
  +
| page = 155 | bibcode=2008MNRAS.386..155S
  +
}} Δείτε επίσης{{cite news
  +
| url=http://space.newscientist.com/article/dn13369-hope-dims-that-earth-will-survive-suns-death.html?feedId=online-news_rss20
  +
| title=Hope dims that Earth will survive Sun's death
  +
| date=2008-02-22
  +
| work=NewScientist.com news service
  +
| first=Jason | last=Palmer
  +
| accessdate=2008-03-24 }}</ref>
  +
  +
Σε ένα ερυθρό γίγαντα με μάζα μέχρι 2,25 ηλιακές μάζες, η σύντηξη υδρογόνου προχωρά σε ένα κέλυφος-στρώμα που περιβάλλει τον πυρήνα. <ref name="hinshaw">{{cite web
  +
| last = Hinshaw | first = Gary | date = 2006-08-23
  +
| url = http://map.gsfc.nasa.gov/m_uni/uni_101stars.html
  +
| title = The Life and Death of Stars
  +
| publisher = NASA WMAP Mission | accessdate = 2006-09-01 }}</ref> Τελικά, ο πυρήνας συμπιέζεται αρκετά για να ξεκινήσει σύντηξη ηλίου, και το αστέρι τώρα σταδιακά συρρικνώνεται σε ακτίνα και αυξάνει τη θερμοκρασία της επιφάνειάς του. Για τα μεγαλύτερα αστέρια, η περιοχή πυρήνα μεταβαίνει απευθείας από τη σύντηξη υδρογόνο στη σύντηξη ηλίου.
  +
  +
Αφού το άστρο έχει καταναλώσει το ήλιο στον πυρήνα, η σύντηξη συνεχίζεται σε ένα κέλυφος γύρω από ένα καυτό πυρήνα άνθρακα και οξυγόνου. Το αστέρι στη συνέχεια ακολουθεί μια εξελικτική πορεία που είναι παράλληλη με την αρχική φάση του ερυθρού γίγαντα, αλλά σε υψηλότερη θερμοκρασία της επιφάνειας.
  +
  +
==== Ογκώδη άστρα ====
  +
{{Κύριο|Υπεργίγαντας}}
  +
[[Αρχείο:Hubble Space Telescope picture of Betelgeuse.jpg|left|thumb|Ο [[Μπετελγκέζ]] είναι ένας ερυθρός υπεργίγαντας που πλησιάζει στο τέλος του κύκλου της ζωής του.]]
  +
Κατά τη διάρκεια της φάσης καύσης του ηλίου, τα αστέρια με πολύ υψηλή, δηλαδή με μάζα μεγαλύτερη από εννέα ηλιακές μάζες θα επεκταθούν για να σχηματίσουν ερυθρούς [[υπεργίγανατας|υπεργίγαντες]]. Μόλις αυτό το καύσιμο έχει εξαντληθεί στον πυρήνα, μπορούν να συνεχίσουν να συτήκουν στοιχεία βαρύτερα από το ήλιο.
  +
  +
Ο πυρήνας συστέλλεται έως ότου η θερμοκρασία και η πίεση να είναι επαρκείς για να συντήξουν άνθρακα. Η διαδικασία αυτή συνεχίζεται, με τα διαδοχικά στάδιά της να τροφοδοτούνται από [[νέον]], [[οξυγόνο]] και [[πυρίτιο]]. Κοντά στο τέλος της ζωής του αστεριού, η σύντηξη μπορεί να συμβεί κατά μήκος μιας σειράς κελυφών εντός του αστέρα, προσδίδοντάς του μια μορφή κρεμμυδιού. Κάθε κέλυφος συντήκει ένα διαφορετικό στοιχείο, με τις εξώτερες περιοχές να συντήκουν υδρογόνο, το επόμενο ήλιο, και ούτω καθ 'εξής. .<ref>{{cite web | url = http://www.nmm.ac.uk/server/show/conWebDoc.299/ | title = What is a star? | publisher = Royal Greenwich Observatory | accessdate = 2006-09-07 }}</ref>
  +
  +
Το τελικό στάδιο επιτυγχάνεται όταν το αστέρι αρχίζει την παραγωγή [[σίδηρος|σιδήρου]]. Επειδή οι πυρήνες σιδήρου είναι πιο στενά συνδεδεμένοι από κάθε βαρύτερους πυρήνες, αν συντήκονταν δεν θα απελευθερωνόταν ενέργεια-η διαδικασία θα ήταν, αντίθετα, να καταναλωθεί ενέργεια. Ομοίως, δεδομένου ότι είναι πιο στενά συνδεδεμένοι από όλους τους ελαφρύτερους πυρήνες, η ενέργεια δεν μπορεί να απελευθερωθεί από την [[πυρηνική σχάση|σχάση]]. <ref name="hinshaw" /> Σε σχετικά παλιά, πολύ ογκώδη αστέρια, ένας μεγάλος πυρήνας αδρανούς σιδήρου θα συγκεντρωθεί στο κέντρο του αστεριού. Τα βαρύτερα στοιχεία σε αυτά τα αστέρια μπορούν να συνεχίσουν την πορεία τους προς την επιφάνεια, σχηματίζοντας αντικείμενα γνωστά ως [[αστέρας Βολφ-Ραγιέ|αστέρες Wolf-Rayet]] που έχουν ένα ισχυρό αστρικό άνεμο που απομακρύνει την εξωτερική ατμόσφαιρα.
  +
  +
=== Κατάρρευση ===
  +
  +
Ένα εξελιγμένο, μέσου μεγέθους αστέρι θα απομακρύνει πλέον τα εξωτερικά στρώματά του ως ένα [[πλανητικό νεφέλωμα]]. Αν αυτό που μένει μετά την απομάκρυνση της εξωτερικής ατμόσφαιρας έχει μάζα λιγότερη από 1,4 ηλιακές μάζες, συρρικνώνεται σε ένα σχετικά μικρό αντικείμενο (περίπου το μέγεθος της Γης) που δεν είναι αρκετά ογκώδες για να λάβει χώρα περαιτέρω συμπίεση. Αυτό το αντικείμενο είναι γνωστό ως [[λευκός νάνος]]. <ref>{{cite journal | author=Liebert, J. | title=White dwarf stars | journal=Annual review of astronomy and astrophysics | year=1980 | volume=18 | issue=2 | pages=363–398 | bibcode=1980ARA&A..18..363L | doi = 10.1146/annurev.aa.18.090180.002051}}</ref> Η [[ύλη εκφυλισμένων ηλεκτρονίων]] μέσα σε ένα λευκό νάνο δεν είναι πλέον [[Πλάσμα (Φυσική)|πλάσμα]], ακόμα κι αν αστέρια γενικά αναφέρονται ως σφαίρες πλάσματος. Οι λευκοί νάνοι τελικά θα εξασθενίσουν σε μαύρους νάνους σε ένα πολύ μεγάλο χρονικό διαστήμα.
  +
  +
[[Αρχείο:Crab Nebula.jpg|thumb|200px|right|Το [[νεφέλωμα του Καρκίνου]], υπόλειμα ενός υπερκαινοφανή που πρωτοπαρατηρήθηκε περίπου το 1050 μ.Χ.]]
  +
Στα μεγαλύτερα αστέρια, η σύντηξη συνεχίζεται μέχρι ο πυρήνας σιδήρου να έχει αυξηθεί σε μάζα τόσο πού (πάνω από 1,4 ηλιακές μάζες), που δεν μπορεί πλέον να στηρίξει τη δική του μάζα. Αυτός ο πυρήνας θα καταρρεύσει ξαφνικά, καθώς τα ηλεκτρόνιά του οδηγούνται στα πρωτόνιά του, σχηματίζοντας [[νετρόνια]] και [[νετρίνα]] μέσα σε μια έκρηξη αντίστροφη της διάσπασης βήτα, ή της σύλληψης ηλεκτρονίων. Το κρουστικό κύμα που σχηματίζεται από αυτήν την ξαφνική κατάρρευση προκαλεί το υπόλοιπο άστρο να εκραγεί ως [[υπερκαινοφανής αστέρας]]. Οι υπερκαινοφανείς είναι τόσο φωτεινοί ώστε να μπορούν να επισκιάσουν για λίγο ολόκληρο το γαλαξία που βρίσκεται ο αστέρας. Όταν εκδηλώνονται εντός του Γαλαξία μας, οι υπερκαινοφανείς έχουν ιστορικά παρατηρηθεί με γυμνό μάτι από τους παρατηρητές ως «νέα αστέρια», όπου δεν υπήρχαν καθόλου πριν. <ref name="supernova">{{cite web
  +
| date = 2006-04-06
  +
| url = http://heasarc.gsfc.nasa.gov/docs/objects/snrs/snrstext.html
  +
| title = Introduction to Supernova Remnants
  +
| publisher = Goddard Space Flight Center
  +
| accessdate = 2006-07-16 }}</ref>
  +
  +
Η περισσότερη από την ύλη του αστέρα απομακρύνεται από την έκρηξη (και σχηματίζει [[νεφέλωμα|νεφελώματα]], όπως το [[Νεφέλωμα του Καρκίνου]])<ref name="supernova" /> και αυτό που μένει θα είναι ένας [[αστέρας νετρονίων]] (ο οποίος εκδηλώνεται ενίοτε ως [[πάλσαρ]] ή με εκρήξεις ακτίνων Χ) ή, στην περίπτωση των μεγαλύτερων αστέρων (αρκετά μεγάλα για να αφήσει ένα αστρικό υπόλειμμα μεγαλύτερο από περίπου 4 ηλιακές μάζες), μια [[μαύρη τρύπα]]. <ref>{{cite journal | author=Fryer, C. L. | title=Black-hole formation from stellar collapse | journal=Classical and Quantum Gravity | year=2003 | volume=20 | issue=10 | pages=S73–S80 | url=http://www.iop.org/EJ/abstract/0264-9381/20/10/309 | doi = 10.1088/0264-9381/20/10/309 | bibcode=2003CQGra..20S..73F}}</ref> Σε έναν αστέρα νετρονίων, η ύλη είναι σε μια κατάσταση γνωστή ως [[ύλη εκφυλισμένων νετρονίων]], με μια πιο εξωτική μορφή του εκφυλισμένη ύλη, την ύλη QCD, που ενδεχομένως υπάρχει μέσα στον πυρήνα. Μέσα σε μια μαύρη τρύπα η ύλη είναι σε μια κατάσταση που δεν είναι σήμερα κατανοητή.
  +
  +
Τα εκτιναγμένα εξωτερικά στρώματα του αστέρα που πεθαίνει περιλαμβάνουν βαρέα στοιχεία που μπορούν να ανακυκλωθούν κατά τη διάρκεια της δημιουργίας νέων αστέρων. Αυτά τα βαριά στοιχεία είναι που επιτρέπουν το σχηματισμό βραχωδών πλανητών. Τα υπολείματα υπερκαινοφανών και ο αστρικός άνεμος από μεγάλα αστέρια παίζουν σημαντικό ρόλο στη διαμόρφωση του διαστρικό ενδιάμεσου. <ref name="supernova" />
   
 
==[[Υποσημείωση|Υποσημειώσεις]]==
 
==[[Υποσημείωση|Υποσημειώσεις]]==
Γραμμή 30: Γραμμή 176:
   
 
==[[Ιστογραφία]]==
 
==[[Ιστογραφία]]==
*[http://el.wikipedia.org/wiki/Αστροφυσική Ομώνυμο άρθρο στην Βικιπαίδεια]
+
*[http://el.wikipedia.org/w/index.php?title=%CE%91%CF%83%CF%84%CE%AD%CF%81%CE%B1%CF%82&action=edit&section=2 Ομώνυμο άρθρο στην Βικιπαίδεια]
 
*[http://www.livepedia.gr/index.php?title=Αστροφυσική Ομώνυμο άρθρο στην Livepedia]
 
*[http://www.livepedia.gr/index.php?title=Αστροφυσική Ομώνυμο άρθρο στην Livepedia]
 
*[ ]
 
*[ ]

Αναθεώρηση της 04:21, 15 Φεβρουαρίου 2014

Αστρική Εξέλιξις

Star Evolution


Stars-Special-01-goog

Αστρική Εξέλιξη
Ειδικοί Φασματικοί Αστέρες
Ειδικοί Αστέρες

- Είναι η Εξελικτική Διαδικασία των Αστέρων.

Ετυμολογία

Η ονομασία "Αστρική" σχετίζεται ετυμολογικά με την Λέξη "αστέρας".

Εισαγωγή

Αστρική εξέλιξη

Οι αστέρες σχηματίζονται μέσα εκτεταμένες περιοχές με μεγαλύτερη πυκνότητα στο διαστρικό μέσο, αν και η πυκνότητα είναι ακόμη χαμηλότερη από το εσωτερικό ενός επίγειου θαλάμου κενού. Αυτές οι περιοχές ονομάζονται μοριακά νέφη και αποτελούνται κυρίως από υδρογόνο, με περίπου 23-28% ήλιο και ένα μικρό ποσοστό βαρύτερα στοιχεία. Ένα παράδειγμα μίας τέτοιας περιοχής σχηματισμού άστρων είναι το νεφέλωμα του Ωρίωνα. [1] Δεδομένου ότι τα μεγάλα αστέρια σχηματίζονται στα μοριακά νέφη, φωτίζουν έντονα αυτά τα σύννεφα. Μπορούν επίσης να ιονίσουν το υδρογόνο, δημιουργώντας μία περιοχή H II.

Σχηματισμός πρωτοαστέρα

Πρότυπο:Κύριο άρθρο

Η δημιουργία ενός αστεριού ξεκινά με μια βαρυτική αστάθεια στο εσωτερικό ενός μοριακού νέφους, που συχνά προκαλείται από τα κρουστικά κύματα ενός υπερκαινοφανή (μαζική αστρική έκρηξη) ή τη σύγκρουση δύο γαλαξιών (όπως σε έναν αστρογόνο γαλαξία). Μόλις μια περιοχή έχει φθάσει σε επαρκή πυκνότητα ύλης για να ικανοποιήσει τα κριτήρια για τη δημιουργία της αστάθειας Τζιν αρχίζει να καταρρέει κάτω από τη δύναμη της δικής του βαρύτητας .[2]

Καθώς το νέφος καταρρέει, μεμονωμένες συγκεντρώσεις της πυκνής σκόνης και του αερίου αποτελούν αυτό που είναι γνωστό ως σφαιρίδιο του Bok. Καθώς ένα σφαιρίδιο καταρρέει και η πυκνότητα αυξάνει, η βαρυτική ενέργεια μετατρέπεται σε θερμότητα και η θερμοκρασία ανεβαίνει. Όταν το πρωταστρικό νέφος έχει φτάσει περίπου σε υδροστατική ισορροπία, ένας πρωτοαστέρας σχηματίζεται στον πυρήνα[3]. Αυτοί οι προ Κύριας Ακολουθίας αστέρες συχνά περιβάλλονται από ένα πρωτοπλανητικό δίσκο. Η περίοδος της βαρυτικής συστολής διαρκεί περίπου 10-15 εκατομμύρια χρόνια.

Οι πρωτοαστέρες που είναι μικρότεροι από 2 ηλιακές μάζες ονομάζονται αστέρες τύπου T Ταύρου, ενώ αυτοί με μεγαλύτερη μάζα είναι αστέρες Herbig AE/Be. Αυτά τα νεογέννητα αστέρια εκπέμπουν πίδακες αερίου κατά μήκος του άξονα περιστροφής τους, γεγονός που μπορεί να μειώσει τη στροφορμή του καταρρέοντος αστέρα και να δημιουργήσει μικρές περιοχές νέφωσης γνωστές ως αντικείμενα Herbig-Haro .[4][5] Αυτοί οι πίδακες, σε συνδυασμό με την ακτινοβολία από κοντινά μεγάλα άστρα, μπορεί να βοηθήσει για να απομακρυνθεί το νέφος μέσα στο οποίο σχηματίστηκε το άστρο. [6]

Κύρια ακολουθία

Πρότυπο:Κύριο

Οι αστέρες δαπανούν περίπου το 90% της διάρκειας της ζωής στη σύντηξη υδρογόνου που μετατρέπεται σε ήλιο σε υψηλή θερμοκρασία και υψηλή πίεση κοντά στον πυρήνα. Τέτοια αστέρια λέγεται ότι είναι στην κύρια ακολουθία και ονομάζονται αστέρια νάνοι. Ξεκινώντας από την μηδέν-ηλικία στην κύρια ακολουθία, η αναλογία του ηλίου στον πυρήνα ενός αστέρα θα αυξάνεται σταθερά. Κατά συνέπεια, προκειμένου να διατηρηθεί το απαιτούμενο ρυθμό πυρηνικής σύντηξης στον πυρήνα, το αστέρι θα αυξήσει αργά τη θερμοκρασία και τη φωτεινότητά του. [7] Στον Ήλιο, για παράδειγμα, εκτιμάται ότι έχει αυξηθεί σε φωτεινότητα κατά 40%, δεδομένου ότι έφτασε η κύρια ακολουθία από 4,6 δισεκατομμύρια χρόνια.[8]

Κάθε αστέρι δημιουργεί ένα αστρικό άνεμο σωματιδίων που προκαλεί μια συνεχή εκροή αερίου προς το διάστημα. Για τα περισσότερα αστέρια, το ποσό της μάζας χάνεται είναι αμελητέα. Ο Ήλιος χάνει 10-14 ηλιακές μάζες κάθε χρόνο,[9] ή περίπου το 0,01% της συνολικής μάζας του για όλη τη διάρκεια της ζωής του. Ωστόσο πολύ ογκώδη αστέρια μπορούν να χάσουν 10-7 έως 10-5 ηλιακές μάζες κάθε χρόνο, γεγονός που επηρεάζει σημαντικά την εξέλιξη τους.[10] Τα αστέρια που αρχίζουν με πάνω από 50 ηλιακές μάζες μπορεί να χάσει πάνω από το ήμισυ συνολικής μάζας τους κατά την παραμονή τους στην κύρια ακολουθία.[11]

Η χρονική διάρκεια που ένα αστέρι δαπανά στην κύρια ακολουθία εξαρτάται πρωτίστως από την ποσότητα καυσίμου που έχει να συντήξει και το ρυθμό με τον οποίο συντήκει αυτό το καύσιμο, δηλαδή από την αρχική του μάζα και φωτεινότητα. Για τον Ήλιο, αυτό το διάστημα εκτιμάται ότι είναι περίπου 1010 χρόνια (10 δισεκατομμύρια χρόνια). Τα μεγάλα αστέρια καταναλώνουν τα καύσιμά τους πολύ γρήγορα και είναι βραχύβια. Τα μικρά αστέρια (που ονομάζεται κόκκινο νάνοι) καταναλώνουν τα καύσιμά τους με πολύ αργό ρυθμό και διαρκούν δεκάδες έως εκατοντάδες δισεκατομμύρια χρόνια. Στο τέλος της ζωής τους, θα γίνουν απλά αχνότερα και αχνότερα. [2] Ωστόσο, δεδομένου ότι η διάρκεια ζωής αυτών των αστέρων είναι μεγαλύτερη από την τρέχουσα ηλικία του σύμπαντος (13,7 δισ. χρόνια), δεν αναμένεται ερυθροί νάνοι να έχουν φτάσει ακόμα σε αυτό το στάδιο.

Εκτός από τη μάζα, το ποσοστό των στοιχείων που είναι βαρύτερα από το ήλιο μπορεί να διαδραματίσει σημαντικό ρόλο στην εξέλιξη των άστρων. Στην αστρονομία όλα τα στοιχεία βαρύτερα από το ήλιο θεωρούνται «μέταλλα», και η συγκέντρωση αυτών των χημικών στοιχείων ονομάζεται μεταλλικότητα. Η μεταλλικότητα μπορεί να επηρεάσει τη διάρκεια που ένα αστέρι θα κάψει τα καύσιμά του, ελέγχει το σχηματισμό των μαγνητικών πεδίων[12] και να τροποποιήσει τη δύναμη του αστρικού ανέμου. [13] Παλαιότερα, ο πληθυσμός αστέρων ΙΙ έχουν σημαντικά μικρότερη μεταλλικότητα από ό, τι οι νεότεροι, οι αστέρες πληθυσμού I, λόγω της σύνθεσης των μοριακών νεφών από τα οποία σχηματίζονται. (Με την πάροδο του χρόνου γίνονται αυτά τα σύννεφα εμπλουτίζονται όλο και περισσότερο με βαρύτερα στοιχεία, καθώς τα μεγαλύτερα αστέρια πεθαίνουν και απομακρύνουν τμήματα της ατμόσφαιράς τους.)

Μετά την κύρια ακολουθία

Πρότυπο:Κύριο

Καθώς αστέρια με μάζα τουλάχιστον 0,4 ηλιακές μάζες εξατλούν το υδρογόνο στον πυρήνα τους, τα εξωτερικά στρώματά τους επεκτείνονται σε μεγάλο βαθμό και γίνονται πιο δροσερά για να σχηματίσουν ένα κόκκινο γίγαντα. Για παράδειγμα, σε περίπου 5 δισεκατομμύρια χρόνια, όταν ο Ήλιος θα είναι ένας ερυθρός γίγαντας, θα αναπτυχθεί σε μέγιστη ακτίνα περίπου 1 αστρονομική μονάδα (150 εκατομμύρια χιλιόμετρα), 250 φορές το σημερινό του μέγεθός του. Ως γίγαντας, ο Ήλιος θα χάσει περίπου το 30% της τρέχουσας μάζας του. [8] [14]

Σε ένα ερυθρό γίγαντα με μάζα μέχρι 2,25 ηλιακές μάζες, η σύντηξη υδρογόνου προχωρά σε ένα κέλυφος-στρώμα που περιβάλλει τον πυρήνα. [15] Τελικά, ο πυρήνας συμπιέζεται αρκετά για να ξεκινήσει σύντηξη ηλίου, και το αστέρι τώρα σταδιακά συρρικνώνεται σε ακτίνα και αυξάνει τη θερμοκρασία της επιφάνειάς του. Για τα μεγαλύτερα αστέρια, η περιοχή πυρήνα μεταβαίνει απευθείας από τη σύντηξη υδρογόνο στη σύντηξη ηλίου.

Αφού το άστρο έχει καταναλώσει το ήλιο στον πυρήνα, η σύντηξη συνεχίζεται σε ένα κέλυφος γύρω από ένα καυτό πυρήνα άνθρακα και οξυγόνου. Το αστέρι στη συνέχεια ακολουθεί μια εξελικτική πορεία που είναι παράλληλη με την αρχική φάση του ερυθρού γίγαντα, αλλά σε υψηλότερη θερμοκρασία της επιφάνειας.

Ογκώδη άστρα

Πρότυπο:Κύριο

Αρχείο:Hubble Space Telescope picture of Betelgeuse.jpg

Ο Μπετελγκέζ είναι ένας ερυθρός υπεργίγαντας που πλησιάζει στο τέλος του κύκλου της ζωής του.

Κατά τη διάρκεια της φάσης καύσης του ηλίου, τα αστέρια με πολύ υψηλή, δηλαδή με μάζα μεγαλύτερη από εννέα ηλιακές μάζες θα επεκταθούν για να σχηματίσουν ερυθρούς υπεργίγαντες. Μόλις αυτό το καύσιμο έχει εξαντληθεί στον πυρήνα, μπορούν να συνεχίσουν να συτήκουν στοιχεία βαρύτερα από το ήλιο.

Ο πυρήνας συστέλλεται έως ότου η θερμοκρασία και η πίεση να είναι επαρκείς για να συντήξουν άνθρακα. Η διαδικασία αυτή συνεχίζεται, με τα διαδοχικά στάδιά της να τροφοδοτούνται από νέον, οξυγόνο και πυρίτιο. Κοντά στο τέλος της ζωής του αστεριού, η σύντηξη μπορεί να συμβεί κατά μήκος μιας σειράς κελυφών εντός του αστέρα, προσδίδοντάς του μια μορφή κρεμμυδιού. Κάθε κέλυφος συντήκει ένα διαφορετικό στοιχείο, με τις εξώτερες περιοχές να συντήκουν υδρογόνο, το επόμενο ήλιο, και ούτω καθ 'εξής. .[16]

Το τελικό στάδιο επιτυγχάνεται όταν το αστέρι αρχίζει την παραγωγή σιδήρου. Επειδή οι πυρήνες σιδήρου είναι πιο στενά συνδεδεμένοι από κάθε βαρύτερους πυρήνες, αν συντήκονταν δεν θα απελευθερωνόταν ενέργεια-η διαδικασία θα ήταν, αντίθετα, να καταναλωθεί ενέργεια. Ομοίως, δεδομένου ότι είναι πιο στενά συνδεδεμένοι από όλους τους ελαφρύτερους πυρήνες, η ενέργεια δεν μπορεί να απελευθερωθεί από την σχάση. [15] Σε σχετικά παλιά, πολύ ογκώδη αστέρια, ένας μεγάλος πυρήνας αδρανούς σιδήρου θα συγκεντρωθεί στο κέντρο του αστεριού. Τα βαρύτερα στοιχεία σε αυτά τα αστέρια μπορούν να συνεχίσουν την πορεία τους προς την επιφάνεια, σχηματίζοντας αντικείμενα γνωστά ως αστέρες Wolf-Rayet που έχουν ένα ισχυρό αστρικό άνεμο που απομακρύνει την εξωτερική ατμόσφαιρα.

Κατάρρευση

Ένα εξελιγμένο, μέσου μεγέθους αστέρι θα απομακρύνει πλέον τα εξωτερικά στρώματά του ως ένα πλανητικό νεφέλωμα. Αν αυτό που μένει μετά την απομάκρυνση της εξωτερικής ατμόσφαιρας έχει μάζα λιγότερη από 1,4 ηλιακές μάζες, συρρικνώνεται σε ένα σχετικά μικρό αντικείμενο (περίπου το μέγεθος της Γης) που δεν είναι αρκετά ογκώδες για να λάβει χώρα περαιτέρω συμπίεση. Αυτό το αντικείμενο είναι γνωστό ως λευκός νάνος. [17] Η ύλη εκφυλισμένων ηλεκτρονίων μέσα σε ένα λευκό νάνο δεν είναι πλέον πλάσμα, ακόμα κι αν αστέρια γενικά αναφέρονται ως σφαίρες πλάσματος. Οι λευκοί νάνοι τελικά θα εξασθενίσουν σε μαύρους νάνους σε ένα πολύ μεγάλο χρονικό διαστήμα.

Αρχείο:Crab Nebula.jpg

Το νεφέλωμα του Καρκίνου, υπόλειμα ενός υπερκαινοφανή που πρωτοπαρατηρήθηκε περίπου το 1050 μ.Χ.

Στα μεγαλύτερα αστέρια, η σύντηξη συνεχίζεται μέχρι ο πυρήνας σιδήρου να έχει αυξηθεί σε μάζα τόσο πού (πάνω από 1,4 ηλιακές μάζες), που δεν μπορεί πλέον να στηρίξει τη δική του μάζα. Αυτός ο πυρήνας θα καταρρεύσει ξαφνικά, καθώς τα ηλεκτρόνιά του οδηγούνται στα πρωτόνιά του, σχηματίζοντας νετρόνια και νετρίνα μέσα σε μια έκρηξη αντίστροφη της διάσπασης βήτα, ή της σύλληψης ηλεκτρονίων. Το κρουστικό κύμα που σχηματίζεται από αυτήν την ξαφνική κατάρρευση προκαλεί το υπόλοιπο άστρο να εκραγεί ως υπερκαινοφανής αστέρας. Οι υπερκαινοφανείς είναι τόσο φωτεινοί ώστε να μπορούν να επισκιάσουν για λίγο ολόκληρο το γαλαξία που βρίσκεται ο αστέρας. Όταν εκδηλώνονται εντός του Γαλαξία μας, οι υπερκαινοφανείς έχουν ιστορικά παρατηρηθεί με γυμνό μάτι από τους παρατηρητές ως «νέα αστέρια», όπου δεν υπήρχαν καθόλου πριν. [18]

Η περισσότερη από την ύλη του αστέρα απομακρύνεται από την έκρηξη (και σχηματίζει νεφελώματα, όπως το Νεφέλωμα του Καρκίνου)[18] και αυτό που μένει θα είναι ένας αστέρας νετρονίων (ο οποίος εκδηλώνεται ενίοτε ως πάλσαρ ή με εκρήξεις ακτίνων Χ) ή, στην περίπτωση των μεγαλύτερων αστέρων (αρκετά μεγάλα για να αφήσει ένα αστρικό υπόλειμμα μεγαλύτερο από περίπου 4 ηλιακές μάζες), μια μαύρη τρύπα. [19] Σε έναν αστέρα νετρονίων, η ύλη είναι σε μια κατάσταση γνωστή ως ύλη εκφυλισμένων νετρονίων, με μια πιο εξωτική μορφή του εκφυλισμένη ύλη, την ύλη QCD, που ενδεχομένως υπάρχει μέσα στον πυρήνα. Μέσα σε μια μαύρη τρύπα η ύλη είναι σε μια κατάσταση που δεν είναι σήμερα κατανοητή.

Τα εκτιναγμένα εξωτερικά στρώματα του αστέρα που πεθαίνει περιλαμβάνουν βαρέα στοιχεία που μπορούν να ανακυκλωθούν κατά τη διάρκεια της δημιουργίας νέων αστέρων. Αυτά τα βαριά στοιχεία είναι που επιτρέπουν το σχηματισμό βραχωδών πλανητών. Τα υπολείματα υπερκαινοφανών και ο αστρικός άνεμος από μεγάλα αστέρια παίζουν σημαντικό ρόλο στη διαμόρφωση του διαστρικό ενδιάμεσου. [18]

Υποσημειώσεις

  1. Woodward, P. R. (1978). "Theoretical models of star formation". Annual review of astronomy and astrophysics 16 (1): 555–584. doi:10.1146/annurev.aa.16.090178.003011. Bibcode1978ARA&A..16..555W. 
  2. Smith, Michael David (2004). The Origin of Stars. Imperial College Press. σελ. 57–68. ISBN 1860945015. 
  3. Seligman, Courtney. Slow Contraction of Protostellar Cloud. Self-published. Αρχειοθετήθηκε από το πρωτότυπο στις 2008-06-23. http://web.archive.org/web/20080623190408/http://courtneyseligman.com/text/stars/starevol2.htm. Ανακτήθηκε την 2006-09-05. 
  4. Πρότυπο:Cite conference
  5. Smith, Michael David (2004). The origin of stars. Imperial College Press. σελ. 176. ISBN 1860945015. 
  6. Πρότυπο:Cite news
  7. Mengel, J. G.; Demarque, P.; Sweigart, A. V.; Gross, P. G. (1979). "Stellar evolution from the zero-age main sequence". Astrophysical Journal Supplement Series 40: 733–791. doi:10.1086/190603. Bibcode1979ApJS...40..733M. 
  8. 8,0 8,1 Sackmann, I. J.; Boothroyd, A. I.; Kraemer, K. E. (1993). "Our Sun. III. Present and Future". Astrophysical Journal 418: 457. doi:10.1086/173407. Bibcode1993ApJ...418..457S. 
  9. Wood, B. E.; Müller, H.-R.; Zank, G. P.; Linsky, J. L. (2002). "Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity". The Astrophysical Journal 574 (1): 412–425. doi:10.1086/340797. Bibcode2002ApJ...574..412W. http://www.journals.uchicago.edu/doi/full/10.1086/340797. 
  10. de Loore, C. (1977). "Evolution of massive stars with mass loss by stellar wind". Astronomy and Astrophysics 61 (2): 251–259. Bibcode1977A&A....61..251D. 
  11. The evolution of stars between 50 and 100 times the mass of the Sun. Royal Greenwich Observatory. http://www.nmm.ac.uk/server/show/conWebDoc.727. Ανακτήθηκε την 2006-09-07. 
  12. Pizzolato, N.; Ventura, P.; D'Antona, F.; Maggio, A.; Micela, G.; Sciortino, S. (2001). "Subphotospheric convection and magnetic activity dependence on metallicity and age: Models and tests". Astronomy & Astrophysics 373 (2): 597–607. doi:10.1051/0004-6361:20010626. Bibcode2001A&A...373..597P. http://www.edpsciences.org/articles/aa/abs/2001/26/aah2701/aah2701.html. 
  13. Mass loss and Evolution. UCL Astrophysics Group. 2004-06-18. Αρχειοθετήθηκε από το πρωτότυπο στις 2004-11-22. http://web.archive.org/web/20041122143115/http://www.star.ucl.ac.uk/groups/hotstar/research_massloss.html. Ανακτήθηκε την 2006-08-26. 
  14. Schröder, K.-P. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386 (1): 155. doi:10.1111/j.1365-2966.2008.13022.x. Bibcode2008MNRAS.386..155S.  Δείτε επίσηςΠρότυπο:Cite news
  15. 15,0 15,1 Hinshaw, Gary (2006-08-23). The Life and Death of Stars. NASA WMAP Mission. http://map.gsfc.nasa.gov/m_uni/uni_101stars.html. Ανακτήθηκε την 2006-09-01. 
  16. What is a star?. Royal Greenwich Observatory. http://www.nmm.ac.uk/server/show/conWebDoc.299/. Ανακτήθηκε την 2006-09-07. 
  17. Liebert, J. (1980). "White dwarf stars". Annual review of astronomy and astrophysics 18 (2): 363–398. doi:10.1146/annurev.aa.18.090180.002051. Bibcode1980ARA&A..18..363L. 
  18. 18,0 18,1 18,2 Introduction to Supernova Remnants. Goddard Space Flight Center. 2006-04-06. http://heasarc.gsfc.nasa.gov/docs/objects/snrs/snrstext.html. Ανακτήθηκε την 2006-07-16. 
  19. Fryer, C. L. (2003). "Black-hole formation from stellar collapse". Classical and Quantum Gravity 20 (10): S73–S80. doi:10.1088/0264-9381/20/10/309. Bibcode2003CQGra..20S..73F. http://www.iop.org/EJ/abstract/0264-9381/20/10/309. 

Εσωτερική Αρθρογραφία

Βιβλιογραφία

Ιστογραφία


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)