Science Wiki

Βαθμιδικόν Πεδίον

Gauge Field

Πεδίο Δυναμική Γραμμή Ισοδυναμική Επιφάνεια

Πεδίο Δυναμική Γραμμή Ισοδυναμική Επιφάνεια Βαρυτικό Πεδίο

Πεδίο Δυναμική Γραμμή Ισοδυναμική Επιφάνεια Ηλεκτρικό Πεδίο

Πεδίο Δυναμική Γραμμή Ισοδυναμική Επιφάνεια

Πεδιακή Θεωρία Κλασσική Πεδιακή Θεωρία Κβαντική Πεδιακή Θεωρία Ενοποιημένη Πεδιακή Θεωρία
Πεδίο Φυσικό Πεδίο Κλασσικό Πεδίο Κβαντικό Πεδίο Βαρυτικό Πεδίο Ηλεκτρικό Πεδίο Μαγνητικό Πεδίο Ηλεκτρομαγνητικό Πεδίο Ασθενές Πεδίο Ηλεκτρασθενές Πεδίο Χρωμικό Πεδίο Ενιαίο Πεδίο
Ομογενές Πεδίο Κεντρικό Πεδίο Σωληνοειδές Πεδίο Συντηρητικό Πεδίο
Μαθηματικό Πεδίο Βαθμωτό Πεδίο Ανυσματικό Πεδίο Τανυστικό Πεδίο

- Μία κατηγορία Πεδίων.


- Η ονομασία "πεδίο" σχετίζεται ετυμολογικά με την λέξη "πεδιάς" ( = πεδιάδα)

- Η ονομασία "βαθμιδικό" σχετίζεται ετυμολογικά με την λέξη "βαθμίδα"


The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian.

The transformations between possible gauges, called gauge transformations, form a Lie group-referred to as the symmetry group or the gauge group of the theory.

Associated with any Lie group is the Lie algebra of group generators.

For each group generator there necessarily arises a corresponding field (usually a vector field) called the gauge field.

Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called gauge invariance).

When such a theory is quantized, the quanta of the gauge fields are called gauge bosons.

If the symmetry group is non-commutative, the gauge theory is referred to as non-abelian, the usual example being the Yang-Mills theory.


Many powerful theories in physics are described by Lagrangians that are invariant under some symmetry transformation groups. When they are invariant under a transformation identically performed at every point in the spacetime in which the physical processes occur, they are said to have a global symmetry.

Local symmetry, the cornerstone of gauge theories, is a stricter constraint. In fact, a global symmetry is just a local symmetry whose group's parameters are fixed in spacetime (the same way a constant value can be understood as a function of a certain parameter, but which output is always the same).

Gauge theories are important as the successful field theories explaining the dynamics of elementary particles.

Quantum electrodynamics is an abelian gauge theory with the symmetry group U(1) and has one gauge field, the electromagnetic four-potential, with the photon being the gauge boson.

The Standard Model is a non-abelian gauge theory with the symmetry group U(1)×SU(2)×SU(3) and has a total of twelve gauge bosons: *the photon,

  • three weak bosons and
  • eight gluons.

Gauge theories are also important in explaining gravitation in the theory of general relativity. Its case is somewhat unique in that the gauge field is a tensor, the Lanczos tensor. Theories of quantum gravity, beginning with gauge gravitation theory, also postulate the existence of a gauge boson, known as the graviton.

Gauge symmetries can be viewed as analogues of the principle of general covariance of general relativity in which the coordinate system can be chosen freely under arbitrary diffeomorphisms of spacetime. Both gauge invariance and diffeomorphism invariance reflect a redundancy in the description of the physical system.

An alternative theory of gravitation, gravity gauge theory, replaces the principle of general covariance with a true gauge principle with new gauge fields.

Historically, these ideas were first stated in the context of classical electromagnetism and later in general relativity. However, the modern importance of gauge symmetries appeared first in the relativistic quantum mechanics of electrons, quantum electrodynamics, elaborated on below.

Today, gauge theories are useful in condensed matter, nuclear and high energy physics among other subfields.


Εσωτερική Αρθρογραφία[]



Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.

Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν


>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)