Γεωμετρία Riemann
Riemannian Geometry
Εφαπτόμενος Χώρος Συνεφαπτόμενος Χώρος
- Ένας Επιστημονικός Κλάδος της Γεωμετρίας .
Το όνομα "Riemannian" σχετίζεται ετυμολογικά με το όνομα "Riemann " .
Βασικές Σχέσεις [ ]
Christoffel symbols, covariant derivative [ ]
In a smooth coordinate chart , the Christoffel symbols are given by:
Γ
i
j
m
=
1
2
g
k
m
(
∂
∂
x
i
g
k
j
+
∂
∂
x
j
g
i
k
−
∂
∂
x
k
g
i
j
)
{\displaystyle \Gamma^m_{ij}=\frac12 g^{km} \left(
\frac{\partial}{\partial x^i} g_{kj}
+\frac{\partial}{\partial x^j} g_{ik}
-\frac{\partial}{\partial x^k} g_{ij}
\right)
}
Here
g
i
j
{\displaystyle g^{ij}}
is the inverse matrix to the metric tensor
g
i
j
{\displaystyle g_{ij}}
. In other words,
δ
j
i
=
g
i
k
g
k
j
{\displaystyle
\delta^i_j = g^{ik}g_{kj}
}
and thus
n
=
δ
i
i
=
g
i
i
=
g
i
j
g
i
j
{\displaystyle
n = \delta^i_i = g^i_i = g^{ij}g_{ij}
}
is the dimension of the manifold .
Christoffel symbols satisfy the symmetry relation
Γ
j
k
i
=
Γ
k
j
i
{\displaystyle
\Gamma^i_{jk}=\Gamma^i_{kj}
}
which is equivalent to the torsion-freeness of the Levi-Civita connection .
The contracting relations on the Christoffel symbols are given by
Γ
k
i
i
=
1
2
g
i
m
∂
g
i
m
∂
x
k
=
1
2
g
∂
g
∂
x
k
=
∂
log
|
g
|
∂
x
k
{\displaystyle \Gamma^i_{ki}=\frac{1}{2} g^{im}\frac{\partial g_{im}}{\partial x^k}=\frac{1}{2g} \frac{\partial g}{\partial x^k} = \frac{\partial \log \sqrt{|g|}}{\partial x^k} \ }
and
g
k
ℓ
Γ
k
ℓ
i
=
−
1
|
g
|
∂
(
|
g
|
g
i
k
)
∂
x
k
{\displaystyle g^{k\ell}\Gamma^i_{k\ell}=\frac{-1}{\sqrt{|g|}} \;\frac{\partial\left(\sqrt{|g|}\,g^{ik}\right)} {\partial x^k}}
where |g | is the absolute value of the determinant of the metric tensor
g
i
k
{\displaystyle g_{ik}\ }
. These are useful when dealing with divergences and Laplacians (see below).
The covariant derivative of a vector field with components
v
i
{\displaystyle v^i}
is given by:
v
i
;
j
=
∇
j
v
i
=
∂
v
i
∂
x
j
+
Γ
j
k
i
v
k
{\displaystyle
v^i {}_{;j}=\nabla_j v^i=\frac{\partial v^i}{\partial x^j}+\Gamma^i_{jk}v^k
}
and similarly the covariant derivative of a
(
0
,
1
)
{\displaystyle (0, 1)}
-tensor field with components
v
i
{\displaystyle v_i}
is given by:
v
i
;
j
=
∇
j
v
i
=
∂
v
i
∂
x
j
−
Γ
i
j
k
v
k
{\displaystyle
v_{i;j}=\nabla_j v_i=\frac{\partial v_i}{\partial x^j}-\Gamma^k_{ij} v_k
}
For a
(
2
,
0
)
{\displaystyle (2,0)}
-tensor field with components
v
i
j
{\displaystyle v^{ij}}
this becomes
v
;
k
i
j
=
∇
k
v
i
j
=
∂
v
i
j
∂
x
k
+
Γ
k
ℓ
i
v
ℓ
j
+
Γ
k
ℓ
j
v
i
ℓ
{\displaystyle
v^{ij}_{;k}=\nabla_k v^{ij}=\frac{\partial v^{ij}}{\partial x^k} +\Gamma^i_{k\ell}v^{\ell j}+\Gamma^j_{k\ell}v^{i\ell}
}
and likewise for tensors with more indices.
The covariant derivative of a function (scalar)
ϕ
{\displaystyle \phi}
is just its usual differential:
∇
i
ϕ
=
ϕ
;
i
=
ϕ
,
i
=
∂
ϕ
∂
x
i
{\displaystyle
\nabla_i \phi=\phi_{;i}=\phi_{,i}=\frac{\partial \phi}{\partial x^i}
}
Because the Levi-Civita connection is metric-compatible, the covariant derivatives of metrics vanish,
∇
k
g
i
j
=
∇
k
g
i
j
=
0
{\displaystyle
\nabla_k g_{ij} = \nabla_k g^{ij} = 0
}
The geodesic
X
(
t
)
{\displaystyle X(t)}
starting at the origin with initial speed
v
i
{\displaystyle v^i}
has Taylor expansion in the chart:
X
(
t
)
i
=
t
v
i
−
t
2
2
Γ
j
k
i
v
j
v
k
+
O
(
t
2
)
{\displaystyle
X(t)^i=tv^i-\frac{t^2}{2}\Gamma^i_{jk}v^jv^k+O(t^2)
}
Curvature tensors [ ]
Riemann curvature tensor [ ]
If one defines the curvature operator as
R
(
U
,
V
)
W
=
∇
U
∇
V
W
−
∇
V
∇
U
W
−
∇
[
U
,
V
]
W
{\displaystyle R(U,V)W=\nabla_U \nabla_V W - \nabla_V \nabla_U W -\nabla_{[U,V]}W}
and the coordinate components of the
(
1
,
3
)
{\displaystyle (1,3)}
-Riemann curvature tensor by
(
R
(
U
,
V
)
W
)
ℓ
=
R
ℓ
i
j
k
W
i
U
j
V
k
{\displaystyle (R(U,V)W)^\ell={R^\ell}_{ijk}W^iU^jV^k}
, then these components are given by:
R
ℓ
i
j
k
=
∂
∂
x
j
Γ
i
k
ℓ
−
∂
∂
x
k
Γ
i
j
ℓ
+
∑
s
=
1
n
(
Γ
j
s
ℓ
Γ
i
k
s
−
Γ
k
s
ℓ
Γ
i
j
s
)
{\displaystyle
{R^\ell}_{ijk}=
\frac{\partial}{\partial x^j} \Gamma_{ik}^\ell-\frac{\partial}{\partial x^k}\Gamma_{ij}^\ell
+\sum^{n}_{s=1}(\Gamma_{js}^\ell\Gamma_{ik}^s-\Gamma_{ks}^\ell\Gamma_{ij}^s)
}
where n denotes the dimension of the manifold. Lowering indices with
R
ℓ
i
j
k
=
g
ℓ
s
R
s
i
j
k
{\displaystyle R_{\ell ijk}=g_{\ell s}{R^s}_{ijk}}
one gets
R
i
k
ℓ
m
=
1
2
(
∂
2
g
i
m
∂
x
k
∂
x
ℓ
+
∂
2
g
k
ℓ
∂
x
i
∂
x
m
−
∂
2
g
i
ℓ
∂
x
k
∂
x
m
−
∂
2
g
k
m
∂
x
i
∂
x
ℓ
)
+
g
n
p
(
Γ
k
ℓ
n
Γ
i
m
p
−
Γ
k
m
n
Γ
i
ℓ
p
)
.
{\displaystyle R_{ik\ell m}=\frac{1}{2}\left(
\frac{\partial^2g_{im}}{\partial x^k \partial x^\ell}
+ \frac{\partial^2g_{k\ell}}{\partial x^i \partial x^m}
- \frac{\partial^2g_{i\ell}}{\partial x^k \partial x^m}
- \frac{\partial^2g_{km}}{\partial x^i \partial x^\ell} \right)
+g_{np} \left(
\Gamma^n_{k\ell} \Gamma^p_{im} -
\Gamma^n_{km} \Gamma^p_{i\ell} \right).
\ }
The symmetries of the tensor are
R
i
k
ℓ
m
=
R
ℓ
m
i
k
{\displaystyle R_{ik\ell m}=R_{\ell mik}\ }
and
R
i
k
ℓ
m
=
−
R
k
i
ℓ
m
=
−
R
i
k
m
ℓ
.
{\displaystyle R_{ik\ell m}=-R_{ki\ell m}=-R_{ikm\ell}.\ }
That is, it is symmetric in the exchange of the first and last pair of indices, and antisymmetric in the flipping of a pair.
The cyclic permutation sum (sometimes called first Bianchi identity) is
R
i
k
ℓ
m
+
R
i
m
k
ℓ
+
R
i
ℓ
m
k
=
0.
{\displaystyle R_{ik\ell m}+R_{imk\ell}+R_{i\ell mk}=0.\ }
The (second) Bianchi identity is
∇
m
R
n
i
k
ℓ
+
∇
ℓ
R
n
i
m
k
+
∇
k
R
n
i
ℓ
m
=
0
,
{\displaystyle \nabla_m R^n {}_{ik\ell} + \nabla_\ell R^n {}_{imk} + \nabla_k R^n {}_{i\ell m}=0,\ }
that is,
R
n
i
k
ℓ
;
m
+
R
n
i
m
k
;
ℓ
+
R
n
i
ℓ
m
;
k
=
0
{\displaystyle R^n {}_{ik\ell;m} + R^n {}_{imk;\ell} + R^n {}_{i\ell m;k}=0 \ }
which amounts to a cyclic permutation sum of the last three indices, leaving the first two fixed.
Ricci and scalar curvatures [ ]
Ricci and scalar curvatures are contractions of the Riemann tensor. They simplify the Riemann tensor, but contain less information.
The Ricci curvature tensor is essentially the unique nontrivial way of contracting the Riemann tensor:
R
i
j
=
R
ℓ
i
ℓ
j
=
g
ℓ
m
R
i
ℓ
j
m
=
g
ℓ
m
R
ℓ
i
m
j
=
∂
Γ
i
j
ℓ
∂
x
ℓ
−
∂
Γ
i
ℓ
ℓ
∂
x
j
+
Γ
i
j
ℓ
Γ
ℓ
m
m
−
Γ
i
ℓ
m
Γ
j
m
ℓ
.
{\displaystyle
R_{ij}={R^\ell}_{i\ell j}=g^{\ell m}R_{i\ell jm}=g^{\ell m}R_{\ell imj}
=\frac{\partial\Gamma^\ell_{ij}}{\partial x^\ell} - \frac{\partial\Gamma^\ell_{i\ell}}{\partial x^j} + \Gamma^\ell_{ij} \Gamma^m_{\ell m} - \Gamma^m_{i\ell}\Gamma^\ell_{jm}.\
}
The Ricci tensor
R
i
j
{\displaystyle R_{ij}}
is symmetric.
By the contracting relations on the Christoffel symbols, we have
R
i
k
=
∂
Γ
i
k
ℓ
∂
x
ℓ
−
Γ
i
ℓ
m
Γ
k
m
ℓ
−
∇
k
(
∂
∂
x
i
(
log
|
g
|
)
)
.
{\displaystyle
R_{ik}=\frac{\partial\Gamma^\ell_{ik}}{\partial x^\ell} - \Gamma^m_{i\ell}\Gamma^\ell_{km} - \nabla_k\left(\frac{\partial}{\partial x^i}\left(\log\sqrt{|g|}\right)\right).\
}
The scalar curvature is the trace of the Ricci curvature,
R
=
g
i
j
R
i
j
=
g
i
j
g
ℓ
m
R
i
ℓ
j
m
{\displaystyle
R=g^{ij}R_{ij}=g^{ij}g^{\ell m}R_{i\ell jm}
}
.
The "gradient" of the scalar curvature follows from the Bianchi identity (proof ):
∇
ℓ
R
ℓ
m
=
1
2
∇
m
R
,
{\displaystyle \nabla_\ell R^\ell {}_m = {1 \over 2} \nabla_m R, \ }
that is,
R
ℓ
m
;
ℓ
=
1
2
R
;
m
.
{\displaystyle R^\ell {}_{m;\ell} = {1 \over 2} R_{;m}. \ }
Einstein tensor [ ]
The Einstein tensor Gab is defined in terms of the Ricci tensor Rab and the Ricci scalar R ,
G
a
b
=
R
a
b
−
1
2
g
a
b
R
{\displaystyle G^{ab} = R^{ab} - {1 \over 2} g^{ab} R \ }
where g is the metric tensor.
The Einstein tensor is symmetric, with a vanishing divergence (proof ) which is due to the Bianchi identity:
∇
a
G
a
b
=
G
a
b
;
a
=
0.
{\displaystyle \nabla_a G^{ab} = G^{ab} {}_{;a} = 0. \ }
Weyl tensor [ ]
The Weyl tensor is given by
C
i
k
ℓ
m
=
R
i
k
ℓ
m
+
1
n
−
2
(
−
R
i
ℓ
g
k
m
+
R
i
m
g
k
ℓ
+
R
k
ℓ
g
i
m
−
R
k
m
g
i
ℓ
)
+
1
(
n
−
1
)
(
n
−
2
)
R
(
g
i
ℓ
g
k
m
−
g
i
m
g
k
ℓ
)
,
{\displaystyle C_{ik\ell m}=R_{ik\ell m} + \frac{1}{n-2}\left(
- R_{i\ell}g_{km}
+ R_{im}g_{k\ell}
+ R_{k\ell}g_{im}
- R_{km}g_{i\ell} \right)
+ \frac{1}{(n-1)(n-2)} R \left(
g_{i\ell}g_{km} - g_{im}g_{k\ell} \right),\ }
where
n
{\displaystyle n}
denotes the dimension of the Riemannian manifold.
Gradient, divergence, Laplace–Beltrami operator [ ]
The gradient of a function
ϕ
{\displaystyle \phi}
is obtained by raising the index of the differential
∂
i
ϕ
d
x
i
{\displaystyle \partial_i\phi dx^i}
, that is:
∇
i
ϕ
=
ϕ
;
i
=
g
i
k
ϕ
;
k
=
g
i
k
ϕ
,
k
=
g
i
k
∂
k
ϕ
=
g
i
k
∂
ϕ
∂
x
k
{\displaystyle \nabla^i \phi=\phi^{;i}=g^{ik}\phi_{;k}=g^{ik}\phi_{,k}=g^{ik}\partial_k \phi=g^{ik}\frac{\partial \phi}{\partial x^k}
}
The divergence of a vector field with components
V
m
{\displaystyle V^m}
is
∇
m
V
m
=
∂
V
m
∂
x
m
+
V
k
∂
log
|
g
|
∂
x
k
=
1
|
g
|
∂
(
V
m
|
g
|
)
∂
x
m
.
{\displaystyle \nabla_m V^m = \frac{\partial V^m}{\partial x^m} + V^k \frac{\partial \log \sqrt{|g|}}{\partial x^k} = \frac{1}{\sqrt{|g|}} \frac{\partial (V^m\sqrt{|g|})}{\partial x^m}.\ }
The Laplace–Beltrami operator acting on a function
f
{\displaystyle f}
is given by the divergence of the gradient:
Δ
f
=
∇
i
∇
i
f
=
1
det
g
∂
∂
x
j
(
g
j
k
det
g
∂
f
∂
x
k
)
=
g
j
k
∂
2
f
∂
x
j
∂
x
k
+
∂
g
j
k
∂
x
j
∂
f
∂
x
k
+
1
2
g
j
k
g
i
l
∂
g
i
l
∂
x
j
∂
f
∂
x
k
=
g
j
k
∂
2
f
∂
x
j
∂
x
k
−
g
j
k
Γ
j
k
l
∂
f
∂
x
l
{\displaystyle
\begin{align}
\Delta f &= \nabla_i \nabla^i f
= \frac{1}{\sqrt{\det g}} \frac{\partial }{\partial x^j}\left(g^{jk}\sqrt{\det
g}\frac{\partial f}{\partial x^k}\right) \\
&=
g^{jk}\frac{\partial^2 f}{\partial x^j \partial x^k} + \frac{\partial g^{jk}}{\partial x^j} \frac{\partial
f}{\partial x^k} + \frac12 g^{jk}g^{il}\frac{\partial g_{il}}{\partial x^j}\frac{\partial f}{\partial x^k}
= g^{jk}\frac{\partial^2 f}{\partial x^j \partial x^k} - g^{jk}\Gamma_{jk}^l\frac{\partial f}{\partial x^l}
\end{align}
}
The divergence of an antisymmetric tensor field of type
(
2
,
0
)
{\displaystyle (2,0)}
simplifies to
∇
k
A
i
k
=
1
|
g
|
∂
(
A
i
k
|
g
|
)
∂
x
k
.
{\displaystyle \nabla_k A^{ik}= \frac{1}{\sqrt{|g|}} \frac{\partial (A^{ik}\sqrt{|g|})}{\partial x^k}.\ }
Kulkarni–Nomizu product [ ]
The Kulkarni–Nomizu product is an important tool for constructing new tensors from existing tensors on a Riemannian manifold. Let
h
{\displaystyle h}
and
k
{\displaystyle k}
be symmetric covariant 2-tensors. In coordinates,
h
i
j
=
h
j
i
k
i
j
=
k
j
i
{\displaystyle h_{ij} = h_{ji} \qquad \qquad k_{ij} = k_{ji} }
Then we can multiply these in a sense to get a new covariant 4-tensor, which we denote
h
⊙
k
{\displaystyle h \odot k}
. The defining formula is
(
h
⊙
k
)
i
j
k
l
=
h
i
k
k
j
l
+
h
j
l
k
i
k
−
h
i
l
k
j
k
−
h
j
k
k
i
l
{\displaystyle \left(h\odot k\right)_{ijkl} = h_{ik}k_{jl} + h_{jl}k_{ik} - h_{il}k_{jk} - h_{jk}k_{il}}
Often the Kulkarni–Nomizu product is denoted by a circle with a wedge that points up inside it. However, we will use
⊙
{\displaystyle \odot}
instead throughout this article. Clearly, the product satisfies
h
⊙
k
=
k
⊙
h
{\displaystyle h \odot k = k \odot h}
Let us use the Kulkarni–Nomizu product to define some curvature quantities.
Weyl tensor [ ]
The Weyl tensor
W
i
j
k
l
{\displaystyle W_{ijkl}}
is defined by the formula
R
i
j
k
l
=
−
R
2
n
(
n
−
1
)
(
g
⊙
g
)
i
j
k
l
+
1
n
−
2
[
(
R
i
c
−
R
n
g
)
⊙
g
]
i
j
k
l
+
W
i
j
k
l
{\displaystyle R_{ijkl} = -\frac{R}{2n(n-1)}(g\odot g)_{ijkl} + \frac{1}{n-2}\left[ \left(Ric -\frac{R}{n}g\right) \odot g \right]_{ijkl} + W_{ijkl}}
Each of the summands on the righthand side have remarkable properties. Recall the first (algebraic) Bianchi identity that a tensor
T
i
j
k
l
{\displaystyle T_{ijkl}}
can satisfy:
T
i
j
k
l
+
T
k
i
j
l
+
T
j
k
i
l
=
0
{\displaystyle T_{ijkl} + T_{kijl} + T_{jkil} = 0 }
Not only the Riemann curvature tensor on the left, but also the three summands on the right satisfy this Bianchi identity. Furthermore, the first factor in the second summand has trace zero. The Weyl tensor is a symmetric product of alternating 2-forms,
W
i
j
k
l
=
−
W
j
i
k
l
W
i
j
k
l
=
W
k
l
i
j
{\displaystyle W_{ijkl} = -W_{jikl} \qquad W_{ijkl} = W_{klij}}
just like the Riemann tensor. Moreover, taking the trace over any two indices gives zero,
W
j
k
i
i
=
0
{\displaystyle W^i_{jki} = 0 }
In fact, any tensor that satisfies the first Bianchi identity can be written as a sum of three terms. The first, a scalar multiple of
g
⊙
g
{\displaystyle g \odot g}
. The second, as
H
⊙
g
{\displaystyle H \odot g}
where
H
{\displaystyle H}
is a symmetric trace-free 2-tensor. The third, a symmetric product of alternating two-forms which is totally traceless, like the Weyl tensor described above.
The most remarkable property of the Weyl tensor, though, is that it vanishes (
W
=
0
{\displaystyle W = 0}
)if and only if a manifold
M
{\displaystyle M}
of dimension
n
≥
4
{\displaystyle n \geq 4}
is locally conformally flat. In other words,
M
{\displaystyle M}
can be covered by coordinate systems in which the metric
d
s
2
{\displaystyle ds^2 }
satisfies
d
s
2
=
f
2
(
d
x
1
2
+
d
x
2
2
+
…
d
x
n
2
)
{\displaystyle ds^2 = f^2\left(dx_1^2 + dx_2^2 + \ldots dx_n^2\right)}
This is essentially because
W
j
k
l
i
{\displaystyle W^i_{jkl}}
is invariant under conformal changes.
In an inertial frame [ ]
An orthonormal inertial frame is a coordinate chart such that, at the origin, one has the relations
g
i
j
=
δ
i
j
{\displaystyle g_{ij} = \delta_{ij}}
and
Γ
j
k
i
=
0
{\displaystyle \Gamma^i_{jk}=0}
(but these may not hold at other points in the frame).
In such a frame, the expression for several operators is simpler. Note that the formulae given below are valid at the origin of the frame only .
R
i
k
ℓ
m
=
1
2
(
∂
2
g
i
m
∂
x
k
∂
x
ℓ
+
∂
2
g
k
ℓ
∂
x
i
∂
x
m
−
∂
2
g
i
ℓ
∂
x
k
∂
x
m
−
∂
2
g
k
m
∂
x
i
∂
x
ℓ
)
{\displaystyle R_{ik\ell m}=\frac{1}{2}\left(
\frac{\partial^2g_{im}}{\partial x^k \partial x^\ell}
+ \frac{\partial^2g_{k\ell}}{\partial x^i \partial x^m}
- \frac{\partial^2g_{i\ell}}{\partial x^k \partial x^m}
- \frac{\partial^2g_{km}}{\partial x^i \partial x^\ell} \right)
}
Under a conformal change [ ]
Let
g
{\displaystyle g}
be a Riemannian metric on a smooth manifold
M
{\displaystyle M}
, and
φ
{\displaystyle \varphi}
a smooth real-valued function on
M
{\displaystyle M}
. Then
g
~
=
e
2
φ
g
{\displaystyle \tilde g = e^{2\varphi}g }
is also a Riemannian metric on
M
{\displaystyle M}
. We say that
g
~
{\displaystyle \tilde g}
is conformal to
g
{\displaystyle g}
. Evidently, conformality of metrics is an equivalence relation. Here are some formulas for conformal changes in tensors associated with the metric. (Quantities marked with a tilde will be associated with
g
~
{\displaystyle \tilde g}
, while those unmarked with such will be associated with
g
{\displaystyle g}
.)
g
~
i
j
=
e
2
φ
g
i
j
{\displaystyle \tilde g_{ij} = e^{2\varphi}g_{ij} }
Γ
~
i
j
k
=
Γ
i
j
k
+
δ
i
k
∂
j
φ
+
δ
j
k
∂
i
φ
−
g
i
j
∇
k
φ
{\displaystyle \tilde \Gamma^k_{ij} = \Gamma^k_{ij}+ \delta^k_i\partial_j\varphi + \delta^k_j\partial_i\varphi-g_{ij}\nabla^k\varphi }
Note that the difference between the Christoffel symbols of two different metrics always form the components of a tensor.
d
V
~
=
e
n
φ
d
V
{\displaystyle d\tilde V = e^{n\varphi}dV}
Here
d
V
{\displaystyle dV}
is the Riemannian volume element.
R
~
i
j
k
l
=
e
2
φ
(
R
i
j
k
l
−
[
g
⊙
(
∇
∂
φ
−
∂
φ
∂
φ
+
1
2
‖
∇
φ
‖
2
g
)
]
i
j
k
l
)
{\displaystyle \tilde R_{ijkl} = e^{2\varphi}\left( R_{ijkl} - \left[ g \odot \left( \nabla\partial\varphi - \partial\varphi\partial\varphi + \frac{1}{2}\|\nabla\varphi\|^2g \right)\right]_{ijkl} \right)}
Here
⊙
{\displaystyle \odot}
is the Kulkarni-Nomizu product defined earlier in this article. The symbol
∂
k
{\displaystyle \partial_k}
denotes partial derivative, while
∇
k
{\displaystyle \nabla_k}
denotes covariant derivative.
R
~
i
j
=
R
i
j
−
(
n
−
2
)
[
∇
i
∂
j
φ
−
(
∂
i
φ
)
(
∂
j
φ
)
]
+
(
△
φ
−
(
n
−
2
)
‖
∇
φ
‖
2
)
g
i
j
{\displaystyle \tilde R_{ij} = R_{ij} - (n-2)\left[ \nabla_i\partial_j \varphi - (\partial_i \varphi)(\partial_j \varphi) \right] + \left( \triangle \varphi - (n-2)\|\nabla \varphi\|^2 \right)g_{ij} }
Beware that here the Laplacian
△
{\displaystyle \triangle}
is minus the trace of the Hessian on functions,
△
f
=
−
∇
i
∂
i
f
{\displaystyle \triangle f = -\nabla^i\partial_i f}
Thus the operator
−
△
{\displaystyle -\triangle}
is elliptic because the metric
g
{\displaystyle g}
is Riemannian.
△
~
f
=
e
−
2
φ
(
△
f
−
(
n
−
2
)
∇
k
φ
∇
k
f
)
{\displaystyle \tilde\triangle f = e^{-2\varphi}\left(\triangle f -(n-2)\nabla^k\varphi\nabla_kf\right)}
R
~
=
e
−
2
φ
(
R
+
2
(
n
−
1
)
△
φ
−
(
n
−
2
)
(
n
−
1
)
‖
∇
φ
‖
2
)
{\displaystyle \tilde R = e^{-2\varphi}\left(R + 2(n-1)\triangle\varphi - (n-2)(n-1)\|\nabla\varphi\|^2\right) }
If the dimension
n
>
2
{\displaystyle n>2}
, then this simplifies to
R
~
=
e
−
2
φ
[
R
+
4
(
n
−
1
)
(
n
−
2
)
e
−
(
n
−
2
)
φ
/
2
△
(
e
(
n
−
2
)
φ
/
2
)
]
{\displaystyle \tilde R = e^{-2\varphi}\left[R + \frac{4(n-1)}{(n-2)}e^{-(n-2)\varphi/2}\triangle\left( e^{(n-2)\varphi/2} \right) \right] }
W
~
j
k
l
i
=
W
j
k
l
i
{\displaystyle \tilde W^i_{jkl} = W^i_{jkl}}
We see that the (3,1) Weyl tensor is invariant under conformal changes.
Let
ω
{\displaystyle \omega}
be a differential
p
{\displaystyle p}
-form. Let
∗
{\displaystyle *}
be the Hodge star, and
δ
{\displaystyle \delta}
the codifferential. Under a conformal change, these satisfy
∗
~
=
e
(
n
−
2
p
)
φ
∗
{\displaystyle \tilde * = e^{(n-2p)\varphi}*}
[
δ
~
ω
]
(
v
1
,
v
2
,
…
,
v
p
−
1
)
=
e
−
2
φ
[
δ
ω
−
(
n
−
2
p
)
ω
(
∇
φ
,
v
1
,
v
2
,
…
,
v
p
−
1
)
]
{\displaystyle \left[\tilde\delta\omega\right](v_1 , v_2 , \ldots , v_{p-1}) = e^{-2\varphi}\left[ \delta\omega - (n-2p)\omega\left(\nabla\varphi, v_1, v_2, \ldots , v_{p-1}\right) \right]}
Conformally flat manifolds [ ]
WARNING: THE FORMULAS BELOW ARE UNCHECKED AND COULD VERY WELL BE WRONG
The setting where the metric takes the form
g
i
j
=
e
2
φ
δ
i
j
,
{\displaystyle g_{ij} = e^{2\varphi} \delta_{ij},}
where
δ
i
j
{\displaystyle \delta_{ij}}
is the standard Euclidean metric, is particularly simple. These manifolds are called conformally flat. In what follows, all the partial derivatives
∂
i
{\displaystyle \partial_{i}}
and the Laplacian
Δ
{\displaystyle \Delta}
are with respect to the Euclidean metric.
The Christoffel symbols are
Γ
i
j
k
=
0
{\displaystyle \Gamma^k_{ij} = 0}
Γ
i
i
i
=
Γ
i
k
i
=
Γ
k
i
i
=
−
Γ
i
i
k
=
∂
k
φ
{\displaystyle \Gamma^i_{ii} = \Gamma^i_{ik} = \Gamma^i_{ki} = -\Gamma^k_{ii} = \partial_k \varphi}
for
i
{\displaystyle i}
,
j
{\displaystyle j}
, and
k
{\displaystyle k}
all distinct.
In this setting, the Ricci tensor takes the form
R
i
i
=
−
Δ
φ
−
n
∂
i
∂
i
φ
−
(
n
−
2
)
(
|
∇
φ
|
2
−
(
∂
i
φ
)
2
)
{\displaystyle R_{ii} = -\Delta \varphi - n \partial_i \partial_i \varphi - (n-2)(|\nabla\varphi|^2 - (\partial_i \varphi)^2)}
R
i
j
=
∂
i
∂
i
φ
+
∂
j
∂
j
φ
−
n
∂
i
∂
j
φ
+
2
(
n
−
2
)
∂
i
φ
∂
j
φ
{\displaystyle R_{ij} = \partial_i \partial_i \varphi + \partial_j \partial_j \varphi - n \partial_i \partial_j \varphi + 2(n-2) \partial_i \varphi \partial_j \varphi}
for
i
{\displaystyle i}
and
j
{\displaystyle j}
distinct. The scalar curvature thus is
R
=
g
i
j
R
i
j
=
e
−
2
φ
δ
i
j
R
i
j
=
e
−
2
φ
(
−
2
n
Δ
φ
−
(
n
−
1
)
(
n
−
2
)
|
∇
φ
|
2
)
.
{\displaystyle R = g^{ij} R_{ij} = e^{-2\varphi} \delta^{ij} R_{ij} = e^{-2\varphi} (-2n \Delta \varphi - (n-1)(n-2) |\nabla \varphi|^2).}
Κίνδυνοι Χρήσης
Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia " δεν μπορεί να εγγυηθεί, από καμιά άποψη ,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.
"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."
Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία ,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.
Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web ),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο .
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν
>>Διαμαρτυρία προς την wikia <<
- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)