Εξίσωση Schrodinger

Schrödinger equation


Εξίσωση Schrodinger Τελεστής Ιδιοσυνάρτηση ιδιοτιμή

Εξίσωση Schrodinger

Επιστημονικός Νόμος Επιστημονικοί Νόμοι
Μαθηματικό Θεώρημα Νόμοι Μαθηματικών
Φυσικός Νόμος Νόμοι Φυσικής
Νόμοι Χημείας
Νόμοι Γεωλογίας
Νόμοι Βιολογίας
Νόμοι Οικονομίας

Κβαντική Φυσική
Εξίσωση Schrodinger Αρχή Διατήρησης Μηχανικής Ενέργειας
Χαμιλτονιανή Κινητική Ενέργεια Δυναμική Ενέργεια
Ιδιοτιμή Ιδιοσυνάρτηση Τελεστής

- Νόμος της Φυσικής.

- Ακριβέστερα, είναι ένας νόμος της Κβαντικής Φυσικής.

Ετυμολογία[επεξεργασία | επεξεργασία κώδικα]

Η ονομασία "Εξίσωση Schrödinger" σχετίζεται ετυμολογικά με την όνομα του Αυστριακού "Schrödinger".

Εισαγωγή[επεξεργασία | επεξεργασία κώδικα]

Η συνήθης συνοπτική μορφή της εξίσωσης Schrödinger είναι:

όπου:

Η Χαμιλτονιανή αποδίδει την ολική ενέργεια του μελετούμενου συστήματος.

Η ακριβής μορφή της (δηλαδή ο συναρτησιακός τύπος της) δεν παρέχεται από την Schrödinger equation και πρέπει να καθορισθεί ανεξάρτητα με βάση τις φυσικές ιδότητες του εν λόγω συστήματος.

Χρησιμοποιώντας τον συμβολισμό Dirac (bra-ket notation), ο ορισμός της ενέργειας έχει ως αποτέλεσμα τον τελεστή της χρονικής παραγώγου (time derivative operator): at time by .

Ανάλυση[επεξεργασία | επεξεργασία κώδικα]

H εξίσωση Σρέντιγκερ προτάθηκε από τον αυστριακό φυσικό Schrοdinger το 1925, για να περιγράψει τη χρονική και χωρική εξάρτηση κβαντομηχανικών συστημάτων.

Παίζει κεντρικό ρόλο στην Κβαντική Φυσική, με σημασία ανάλογη του δεύτερου νόμου του Νεύτωνα στην Κλασσική Μηχανική.

Η πλήρης μορφή της εξίσωσης είναι η ακόλουθη:

  • α) σε 1D- μορφή
  • β) σε 3D-μορφή


Με τον συμβολισμό του Dirac για της εξαρτημένες από τον χρόνο καταστάσεις |ψ(t)> η εξίσωση μπορεί να γραφεί:

Στην πράξη, σε πολλά προβλήματα επιλύεται η λεγόμενη χρονοανεξάρτητη εξίσωση Σρέντιγκερ, οποία έχει τη μορφή:

και με τον συμβολισμό Dirac γράφεται

όπου ο δείκτης συμβολίζει την αντίστοιχη Κβαντική Κατάσταση του συστήματος.

Η εξίσωση αυτή είναι μια εξίσωση ιδιοτιμών και επιλύεται ευκολότερα από την χρονοεξαρτημένη εξίσωση Σρέντιγκερ, η οποία είναι μια μερική διαφορική εξίσωση.

Η γενική λύση της είναι η λύση της χρονοανεξάρτητης εξίσωσης πολλαπλασιασμένη με τον τελεστή της χρονικής εξέλιξης.

Θα είναι δηλαδή:

όπου η λύση της χρονοανεξάρτητης εξίσωσης.

Λύσεις Εξίσωσης Schrödinger[επεξεργασία | επεξεργασία κώδικα]

Αν και σε ρεαλιστικά προβλήματα η εξίσωση Schrödinger δεν επιλύεται ακριβώς, υπάρχουν ορισμένα ακριβώς επιλύσιμα προβλήματα τα οποία μελετώνται εκτενώς σε εισαγωγικά μαθήματα κβαντομηχανικής. Ορισμένα από τα προβλήματα αυτά είναι τα παρακάτω:

Μέθοδοι Επίλυσης[επεξεργασία | επεξεργασία κώδικα]

Εξίσωση Schrodinger.

Κυματοσυνατήσεις υδρογόνου.

For many systems, however, there is no analytic solution to the Schrödinger equation. In these cases, one must resort to approximate solutions. Some of the common techniques are:

Υποσημειώσεις[επεξεργασία | επεξεργασία κώδικα]

Εσωτερική Αρθρογραφία[επεξεργασία | επεξεργασία κώδικα]

Βιβλιογραφία[επεξεργασία | επεξεργασία κώδικα]

  • E. Schrödinger, Ann. Phys. (Leipzig) 489 (1926) p.79
  • E. Schrödinger, Phys. Rev. 28 (1926) p. 1049
  • David J. Griffiths "Introduction to Quantum Mechanics (2nd ed.) " , Prentice Hall, 2004 , ISBN 013805326X
  • Τραχανάς Στέφανος, Κβαντομηχανική Ι, Πανεπιστημιακές Εκδόσεις Κρήτης 2009
  • Ταμβάκης Κυριάκος, Εισαγωγή στην Κβαντομηχανική, Leader Books 2003
  • Merzbacher Eugen, Quantum Mechanics, John Wiley & Sons 2ndedition (1970?)
  • Sakurai J., Modern Quantum Mechanics, Addison-Wesley 1994 (revised edition)
  • Sakurai J., Advanced Quantum Mechanics, ? 1967
  • Shankar Ramamurti, Principles of Quantum Mechanics, Springer Science+Business Media 1994
  • Zettili Nouredine, Quantum Mechanics Concepts and Applications, John Wiley and Sons 2009

Ιστογραφία[επεξεργασία | επεξεργασία κώδικα]


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Community content is available under CC-BY-SA unless otherwise noted.