Ερμιτιανός Τελεστής

Hermitian Operator


Μαθηματική Μήτρα Μιγαδική Συζυγής ΜήτραΑνάστροφη Μήτρα Ερμιτιανή Μήτρα

- Ένας τελεστής.

Ετυμολογία[επεξεργασία | επεξεργασία κώδικα]

Η ονομασία "Ερμιτιανός" σχετίζεται ετυμολογικά με την λέξη "Hermite".

Εισαγωγή[επεξεργασία | επεξεργασία κώδικα]

A partially defined linear operator A on a Hilbert space H is called symmetric if

for all elements x and y in the domain of A. More generally, a partially defined linear operator A from a topological vector space E into its continuous dual space E is said to be symmetric if

for all elements x and y in the domain of A. This usage is fairly standard in the functional analysis literature.

A symmetric everywhere defined operator is self-adjoint. By the Hellinger-Toeplitz theorem, a symmetric everywhere defined operator is also bounded.

Εφαρμογή[επεξεργασία | επεξεργασία κώδικα]

Σε κάθε Φυσικό Μέγεθος αντιστοιχεί ένας κατάλληλος Ερμιτιανός Τελεστής, του οποίου οι ιδιοτιμές είναι τα μοναδικά δυνατά εξαγόμενα μιας μέτρησης.

Υποσημειώσεις[επεξεργασία | επεξεργασία κώδικα]

Εσωτερική Αρθρογραφία[επεξεργασία | επεξεργασία κώδικα]

Βιβλιογραφία[επεξεργασία | επεξεργασία κώδικα]

Ιστογραφία[επεξεργασία | επεξεργασία κώδικα]


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Community content is available under CC-BY-SA unless otherwise noted.