Κανονική Μεταθετική Σχέσις
Canonical commutation relation,
- Μία σχέση
Ετυμολογία[]
Η ονομασία "Σχέση" σχετίζεται ετυμολογικά με την λέξη "σχήμα".
Εισαγωγή[]
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,
between the position operator x and momentum operator px in the x direction of a point particle in one dimension,
where [x , px] = x px − px x is the commutator of x and px,
i is the imaginary unit, and
ℏ is the reduced Planck's constant h/2π, and
is the unit operator.
In general, position and momentum are vectors of operators and their commutation relation between different components of position and momentum can be expressed as where is the Kronecker delta.
This relation is attributed to Werner Heisenberg, Max Born and Pascual Jordan (1925),[1][2] who called it a "quantum condition" serving as a postulate of the theory; it was noted by E. Kennard (1927)[3] to imply the Heisenberg uncertainty principle. The Stone–von Neumann theorem gives a uniqueness result for operators satisfying (an exponentiated form of) the canonical commutation relation.
Relation to classical mechanics[]
By contrast, in classical physics, all observables commute and the commutator would be zero. However, an analogous relation exists, which is obtained by replacing the commutator with the Poisson bracket multiplied by iℏ,
This observation led Dirac to propose that the quantum counterparts of classical observables f, g satisfy
In 1946, Hip Groenewold demonstrated that a general systematic correspondence between quantum commutators and Poisson brackets could not hold consistently.[4][5]
However, he further appreciated that such a systematic correspondence does, in fact, exist between the quantum commutator and a deformation of the Poisson bracket, today called the Moyal bracket, and, in general, quantum operators and classical observables and distributions in phase space. He thus finally elucidated the consistent correspondence mechanism, the Wigner–Weyl transform, that underlies an alternate equivalent mathematical representation of quantum mechanics known as deformation quantization.[4][6]
Derivation from Hamiltonian mechanics[]
According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion. The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p:
In quantum mechanics the Hamiltonian , (generalized) coordinate and (generalized) momentum are all linear operators.
The time derivative of a quantum state is - (by Schrödinger equation). Equivalently, since the operators are not explicitly time-dependent, they can be seen to be evolving in time (see Heisenberg picture) according to their commutation relation with the Hamiltonian:
In order for that to reconcile in the classical limit with Hamilton's equations of motion, must depend entirely on the appearance of in the Hamiltonian and must depend entirely on the appearance of in the Hamiltonian. Further, since the Hamiltonian operator depends on the (generalized) coordinate and momentum operators, it can be viewed as a functional, and we may write (using functional derivatives):
In order to obtain the classical limit we must then have
Υποσημειώσεις[]
- ↑ The Development of Quantum Mechanics. https://www.heisenberg-gesellschaft.de/3-the-development-of-quantum-mechanics-1925-ndash-1927.html.
- ↑ Born, M.; Jordan, P. (1925). "Zur Quantenmechanik". Zeitschrift für Physik 34 (1): 858–888. doi: . Bibcode: 1925ZPhy...34..858B.
- ↑ Kennard, E. H. (1927). "Zur Quantenmechanik einfacher Bewegungstypen". Zeitschrift für Physik 44 (4–5): 326–352. doi: . Bibcode: 1927ZPhy...44..326K.
- ↑ 4,0 4,1 Groenewold, H. J. (1946). "On the principles of elementary quantum mechanics". Physica 12 (7): 405–460. doi: . Bibcode: 1946Phy....12..405G.
- ↑ Πρότυπο:Harvnb Theorem 13.13
- ↑ Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter 01: 37–46. doi: .
Εσωτερική Αρθρογραφία[]
- Επισυνόλεια Σχέση
- επίσχεση, κατάσχεση, ανάσχεση
- υπόσχεση
- συγγένεια
- συσχέτιση
- συσχετισμός
- Διμελής Σχέση
- Ισοδυναμιακή Σχέση
- Σχέση Μικρο-Οικονομίας Βιο-Κυττάρου
- Σχέση Μακρο-Οικονομίας Βιο-Οργανισμού
- σχετικοποίηση, σχετικισμός
- σχετικότητα
Βιβλιογραφία[]
Ιστογραφία[]
![]() ![]() |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)