Κυματοσυνάρτησις
- Μία Φυσική Κατάσταση.
Ετυμολογία[]
Η ονομασία "Κβαντική" σχετίζεται ετυμολογικά με την λέξη "κβάντο".
Εισαγωγή[]
Μία κατάσταση που έχει κεντρικό ρόλο στην Κβαντική Φυσική
Στην Κβαντική Μηχανική η έννοια της κβαντικής κατάστασης είναι αφηρημένη και χρησιμοποιείται για να περιγράψει την κατάσταση στην οποία βρίσκεται ένα Κβαντικό Σύστημα. Η κβαντική κατάσταση αναπαριστάται από ένα μαθηματικό μέγεθος, όπως μία κυματοσυνάρτηση ή ένα density operator.
Θεωρούμε ότι το σύνολο της πληροφορίας που είναι δυνατόν να αντληθεί από το συγκεκριμένο Κβαντικό Σύστημα περιέχεται στην μαθηματική της αναπαράσταση και μπορούμε να την εξάγουμε χρησιμοποιώντας τον κατάλληλο φορμαλισμό.
In quantum physics, quantum state refers to the state of an isolated quantum system.
A quantum state provides a probability distribution for the value of each observable, i.e. for the outcome of each possible measurement on the system.
Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior.
A mixture of quantum states is again a quantum state.
Quantum states
- that cannot be written as a mixture of other states are called pure quantum states, all other states
- are called mixed quantum states.
Mathematically, a pure quantum state can be represented by a ray in a Hilbert space over the complex numbers.[1] The ray is a set of nonzero vectors differing by just a complex scalar factor; any of them can be chosen as a state vector to represent the ray and thus the state. A unit vector is usually picked, but its phase factor can be chosen freely anyway. Nevertheless, such factors are important when state vectors are added together to form a superposition.
Hilbert space is a generalization of the ordinary Euclidean space[2] and it contains all possible pure quantum states of the given system. If this Hilbert space, by choice of representation (essentially a choice of basis corresponding to a complete set of observables), is exhibited as a function space, a Hilbert space in its own right, then the representatives are called wave functions.
For example, when dealing with the energy spectrum of the electron in a hydrogen atom, the relevant state vectors are identified by the principal quantum number n, the angular momentum quantum number l, the magnetic quantum number m, and the spin z-component sz. A more complicated case is given (in bra-ket notation) by the spin part of a state vector
which involves superposition of joint spin states for two particles with spin 1/2.
A mixed quantum state corresponds to a probabilistic mixture of pure states; however, different distributions of pure states can generate equivalent (i.e., physically indistinguishable) mixed states. Mixed states are described by so-called density matrices.
A pure state can also be recast as a density matrix; in this way, pure states can be represented as a subset of the more general mixed states.
For example, if the spin of an electron is measured in any direction, e.g. with a Stern-Gerlach experiment, there are two possible results: up or down. The Hilbert space for the electron's spin is therefore two-dimensional. A pure state here is represented by a two-dimensional complex vector , with a length of one; that is, with
- where:
- and
are the absolute values of and .
A mixed state, in this case, is a matrix that is Hermitian, positive-definite, and has trace 1.
Before a particular measurement is performed on a quantum system, the theory usually gives only a probability distribution for the outcome, and the form that this distribution takes is completely determined by the quantum state and the observable describing the measurement.
These probability distributions arise for both mixed states and pure states: it is impossible in quantum mechanics (unlike classical mechanics) to prepare a state in which all properties of the system are fixed and certain. This is exemplified by the uncertainty principle, and reflects a core difference between classical and quantum physics.
Even in quantum theory, however, for every observable there are some states that have an exact and determined value for that observable.[2][3]
Πίνακας Αντιστοιχίας[]
Σύγκριση Κλασσικού Κόσμου & Κβαντικού Κόσμου | ||||
---|---|---|---|---|
1. | Φύση | Κλασσικό Σωματίδιο ---- Τροχιά |
Κβαντικό Σωματίδιο ---- Κβαντική Κατάσταση | |
2. | Φυσική | Θέση (x) |
Κυματοσυνάρτηση (ψ(x)) | |
3. | Γεωμετρία | Σημείο του τρισ-διάστατου Γεωμετρικού Ευκλείδειου Χώρου |
Σημείο του ν-διάστατου (Γεωμετρικού) Χώρου Hilbert | |
4. | Άλγεβρα | Στοιχείο (δηλ. τριάδα συναρτήσεων) του τρισ-διάστατου Αλγεβρικού Ευκλείδειου Χώρου |
Στοιχείο (δηλ. νιάδα συναρτήσεων) του ν-διάστατου (Αλγεβρικού) Χώρου Lebesgue |
Υποσημειώσεις[]
- ↑ Weinberg, S. (2002), The Quantum Theory of Fields, I, Cambridge University Press, ISBN 0-521-55001-7
- ↑ 2,0 2,1 Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, ISBN 0-13-111892-7
- ↑ Ballentine, L. E. (1970), "The Statistical Interpretation of Quantum Mechanics", Reviews of Modern Physics 42: 358–381, doi:, http://link.aps.org/doi/10.1103/RevModPhys.42.358
Εσωτερική Αρθρογραφία[]
- Θερμοδυναμική Κατάσταση
- Σταθερή Κατάσταση
- Απωθητική Κατάσταση (= Repulsive state)
- Κβαντική Μηχανική, Κυματοσυνάρτηση
- Στατική Κατάσταση (= stationary state)
- Βασική Κατάσταση (= ground state)
- Εκφυλισμένη Κατάσταση ( = Degenerate state)
- Διηγερμένη Κατάσταση (= Excited state)
- Δέσμια Κατάσταση (= bound state)
- Καθαρή Κατάσταση (= Pure state)
- Μικτή Κατάσταση (= Mixed state)
- Σύμφωνη Κατάσταση ( = coherent state)
- Ελεύθερη Κατάσταση ( = Free state)
- Κενοϊκή Κατάσταση
- Διεμπλεγμένη Κατάσταση ( = Entangled state)
Βιβλιογραφία[]
Ιστογραφία[]
Κίνδυνοι Χρήσης |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν
- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)