FANDOM


Κλάσις

class, Equivalence_class


Equivalence-classes-01-goog

Κλάση Ισοδυναμίας

Equivalence-Class-03-goog

Κλάση Ισοδυναμίας

- Ένα σύνολο.

ΕτυμολογίαEdit

Η ονομασία "Κλάση" σχετίζεται ετυμολογικά με την λέξη "κλάσμα".

ΕισαγωγήEdit

Κλάση καλείται ένα σύνολο που ως στοιχεία έχει άλλα σύνολα.

In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity.

A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems.

In Quine's set-theoretical writing, the phrase "ultimate class" is often used instead of the phrase "proper class" emphasising that in the systems he considers, certain classes cannot be members, and are thus the final term in any membership chain to which they belong.

Outside set theory, the word "class" is sometimes used synonymously with "set". This usage dates from a historical period where classes and sets were not distinguished as they are in modern set-theoretic terminology. Many discussions of "classes" in the 19th century and earlier are really referring to sets, or perhaps rather take place without considering that certain classes can fail to be sets.

Κλάση ΙσοδυναμίαςEdit

Το σύνολο όλων των α και β για τα οποία α ~ b συνθέτουν μια κλάση ισοδυναμίας του A από την ~.

Έστω

$ [a] := \{x \in A | x \sim a\} $

προσδιορίζει την ισοδυναμία κατηγορία στην οποία ανήκει το α.

Στη συνέχεια, όλα τα στοιχεία του A είναι ισοδύναμα μεταξύ τους, όπως και τα στοιχεία της ίδιας κλάσης ισοδυναμίας.


Έστω ∼ μια σχέση ισοδυναμίας σε ένα μη κενό σύνολο A.

Ονομάζουμε κλάση ισοδυναμίας ενός στοιχείου x ∈ A, και τη συμβολίζουμε με [a], το σύνολο όλων των στοιχείων x του A, τα οποία είναι ισοδύναμα με το στοιχείο a, δηλαδή

[a] = {x ∈ A |x ∼ a}.

Το στοιχείο a λέγεται αντιπρόσωπος της κλάσης αυτής.

Αν δύο κλάσεις ισοδυναμίας έχουν έστω και ένα κοινό στοιχείο, τότε αναγκαστικά ταυτίζονται.

Αυτό σημαίνει ότι δύο κλάσεις ισοδυναμίας είτε ταυτίζονται, είτε είναι σύνολα ξένα μεταξύ τους υποσύνολα του A.

Έτσι, το σύνολο A χωρίζεται σε ξένα μεταξύ τους υποσύνολα, τα οποία καλύπτουν το A.

Ένας τέτοιος διαχωρισμός ενός συνόλου λέγεται διαμελισμός ή διαμερισμός του συνόλου.

Το σύνολο όλων των κλάσεων ισοδυναμίας λέγεται Σύνολο Πηλίκο, και συμβολίζεται με A/R ή A/∼, όπου R ή ∼ είναι η Σχέση Ισοδυναμίας.

ΥποσημειώσειςEdit

Εσωτερική ΑρθρογραφίαEdit

ΒιβλιογραφίαEdit

ΙστογραφίαEdit


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Community content is available under CC-BY-SA unless otherwise noted.