Πολύπτυχον


Πολύπτυχο
Μαθηματικά Πολύπτυχα

Αθανασία
Αφθαρσία
- Ένα Πολύπτυχο (ή αλλιώς, πολλαπλότητα)
Ετυμολογία[]
Η ονομασία "πολύπτυχο" σχετίζεται ετυμολογικά με την λέξη "πτυχή".
Εισαγωγή[]
a differentiable manifold for which all the transition maps are smooth.
That is, derivatives of all orders exist; so it is a Ck-manifold for all k.
An equivalence class of such atlases is said to be a "smooth structure".
smooth structure[]
In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold.[1]
Definition[]
A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an atlas for M such that each transition function is a smooth map, and two smooth atlases for M are smoothly equivalent provided their union is again a smooth atlas for M. This gives a natural equivalence relation on the set of smooth atlases.
A smooth manifold is a topological manifold M together with a smooth structure on M.
Maximal smooth atlases[]
By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal atlas and vice versa.
In general, computations with the maximal atlas of a manifold are rather unwieldy. For most applications, it suffices to choose a smaller atlas. For example, if the manifold is compact, then one can find an atlas with only finitely many charts.
Equivalence of smooth structures[]
Let and be two maximal atlases on M. The two smooth structures associated to and are said to be equivalent if there is a homeomorphism such that .
Exotic spheres[]
John Milnor showed in 1956 that the 7-dimensional sphere admits a smooth structure that is not equivalent to the standard smooth structure. A sphere equipped with a nonstandard smooth structure is called an exotic sphere.
E8 Manifold[]
The E8 manifold is an example of a topological manifold that does not admit a smooth structure. This essentially demonstrates that Rokhlin's theorem holds only for smooth structures, and not topological manifolds in general.
Related structures[]
The smoothness requirements on the transition functions can be weakened, so that we only require the transition maps to be k-times continuously differentiable; or strengthened, so that we require the transition maps to be real-analytic. Accordingly, this gives a or (real-)analytic structure on the manifold rather than a smooth one. Similarly, we can define a complex structure by requiring the transition maps to be holomorphic.
Υποσημειώσεις[]
- ↑ Callahan, James J. (1974). "Singularities and plane maps". Amer. Math. Monthly 81: 211–240. doi:. http://www.maa.org/programs/maa-awards/writing-awards/singularities-and-plane-maps.
Εσωτερική Αρθρογραφία[]
Βιβλιογραφία[]
Ιστογραφία[]
![]() ![]() |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)