Μήτρα Pauli

Pauli Matrix, πίνακας


Μαθηματική Μήτρα

Μαθηματική Μήτρα
Μιγαδική Συζυγής Μήτρα
Ανάστροφη Μήτρα
Ερμιτιανή Μήτρα

- Μία Μήτρα.

Ετυμολογία[επεξεργασία | επεξεργασία κώδικα]

Οργάνωση μήτρας, Row = σειρά, column = στήλη

Η ονομασία "Μήτρα" σχετίζεται ετυμολογικά με την λέξη "μήτηρ".

Εισαγωγή[επεξεργασία | επεξεργασία κώδικα]

The Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian and unitary.[1] Usually indicated by the Greek letter sigma (σ), they are occasionally denoted with a tau (τ) when used in connection with isospin symmetries. They are:

These matrices were used by, then named after, the Austrian-born physicist Wolfgang Pauli (1900–1958), in his 1925 study of spin in quantum mechanics. They occur in the Pauli equation which takes into account the interaction of the spin of a particle with the electromagnetic field.

Each Pauli matrix is Hermitian, and together with the identity matrix I (sometimes considered the zeroth Pauli matrix ), the Pauli matrices (being multiplied by real coefficients) span the full vector space of 2 × 2 Hermitian matrices. In the language of quantum mechanics, hermitian matrices are observables, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space. In the context of Pauli's work, is the observable corresponding to spin along the kth coordinate axis in three-dimensional Euclidean space3.

The Pauli matrices (after multiplication by i to make them anti-hermitian), also generate transformations in the sense of Lie algebras: the matrices form a basis for , which exponentiates to the spin group SU(2), and for the identical Lie algebra , which exponentiates to the Lie group SO(3) of rotations of 3-dimensional space. Moreover, the algebra generated by the three matrices is isomorphic to the Clifford algebra of ℝ3, called the algebra of physical space.

Algebraic properties[επεξεργασία | επεξεργασία κώδικα]

where I is the identity matrix, i.e. the matrices are involutory.

From above we can deduce that the eigenvalues of each σi are ±1.

  • Together with the identity matrix I (which is sometimes written as σ0), the Pauli matrices form an orthogonal basis, in the sense of Hilbert–Schmidt, for the real Hilbert space of 2 × 2 complex Hermitian matrices, or the complex Hilbert space of all 2 × 2 matrices.

Eigenvectors and eigenvalues[επεξεργασία | επεξεργασία κώδικα]

Each of the (hermitian) Pauli matrices has two eigenvalues, +1 and −1. The corresponding normalized eigenvectors are:

Pauli vector[επεξεργασία | επεξεργασία κώδικα]

The Pauli vector is defined by

and provides a mapping mechanism from a vector basis to a Pauli matrix basis as follows

(summation over indices implied). Note that in this vector dotted with Pauli vector operation the Pauli matrices are treated in a scalar like fashion, commuting with the vector basis elements.

Commutation relations[επεξεργασία | επεξεργασία κώδικα]

The Pauli matrices obey the following commutation and anticommutation relations:

where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.

The above two relations are equivalent to:

.

For example,

and the summary equation for the commutation relations can be used to prove

(as long as the vectors a and b commute with the pauli matrices)

as well as

for and .

Completeness relation[επεξεργασία | επεξεργασία κώδικα]

An alternative notation that is commonly used for the Pauli matrices is to write the vector index in the superscript, and the matrix indices as subscripts, so that the element in row and column of the th Pauli matrix is .

In this notation, the completeness relation for the Pauli matrices can be written

As noted above, it is common to denote the unit matrix by , so . The completeness relation can therefore alternatively be expressed as

.

Relation with the permutation operator[επεξεργασία | επεξεργασία κώδικα]

Let be the permutation (transposition, actually) between two spins and living in the tensor product space , . This operator can be written as , as the reader can easily verify.

SU(2)[επεξεργασία | επεξεργασία κώδικα]

The matrix group SU(2) is a Lie group, and its Lie algebra is the set of the anti-Hermitian 2×2 matrices with trace 0. Direct calculation shows that the Lie algebra su(2) is the 3-dimensional real algebra spanned by the set {}. In symbols,

As a result, s can be seen as infinitesimal generators of SU(2).

A Cartan decomposition of SU(2)[επεξεργασία | επεξεργασία κώδικα]

As SU(2) is a compact group, its Cartan decomposition is trivial.

SO(3)[επεξεργασία | επεξεργασία κώδικα]

The Lie algebra su(2) is isomorphic to the Lie algebra so(3), which corresponds to the Lie group SO(3), the group of rotations in three-dimensional space. In other words, one can say that 's are a realization (and, in fact, the lowest-dimensional realization) of infinitesimal rotations in three-dimensional space. However, even though su(2) and so(3) are isomorphic as Lie algebras, SU(2) and SO(3) are not isomorphic as Lie groups. SU(2) is actually a double cover of SO(3), meaning that there is a two-to-one group homomorphism from SU(2) to SO(3).

Quaternions[επεξεργασία | επεξεργασία κώδικα]

The real linear span of is isomorphic to the real algebra of quaternions H. The isomorphism from H to this set is given by the following map (notice the reversed signs for the Pauli matrices):

Alternatively, the isomorphism can be achieved by a map using the Pauli matrices in reversed order,[2]

As the quaternions of unit norm is group-isomorphic to SU(2), this gives yet another way of describing SU(2) via the Pauli matrices. The two-to-one homomorphism from SU(2) to SO(3) can also be explicitly given in terms of the Pauli matrices in this formulation.

Quaternions form a division algebra—every non-zero element has an inverse—whereas Pauli matrices do not. For a quaternionic version of the algebra generated by Pauli matrices see biquaternions, which is a venerable algebra of eight real dimensions.

Physics[επεξεργασία | επεξεργασία κώδικα]

Quantum mechanics[επεξεργασία | επεξεργασία κώδικα]

  • In quantum mechanics, each Pauli matrix is related to an operator that corresponds to an observable describing the spin of a [[spin-½|spin Πρότυπο:Sfrac]] particle, in each of the three spatial directions. Also, as an immediate consequence of the Cartan decomposition mentioned above, are the generators of rotation acting on non-relativistic particles with spin Πρότυπο:Sfrac. The state of the particles are represented as two-component spinors. An interesting property of spin Πρότυπο:Sfrac particles is that they must be rotated by an angle of 4π in order to return to their original configuration. This is due to the two-to-one correspondence between SU(2) and SO(3) mentioned above, and the fact that, although one visualizes spin up/down as the north/south pole on the 2-sphere S2, they are actually represented by orthogonal vectors in the two dimensional complex Hilbert space.

:

:

  • The fact that any 2 × 2 complex Hermitian matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the Bloch sphere representation of 2 × 2 mixed states (2 × 2 positive semidefinite matrices with trace 1). This can be seen by simply first writing a Hermitian matrix as a real linear combination of {σ0, σ1, σ2, σ3} then impose the positive semidefinite and trace 1 assumptions.

Quantum information[επεξεργασία | επεξεργασία κώδικα]

  • In quantum information, single-qubit quantum gates are 2 × 2 unitary matrices. The Pauli matrices are some of the most important single-qubit operations. In that context, the Cartan decomposition given above is called the Z–Y decomposition of a single-qubit gate. Choosing a different Cartan pair gives a similar X–Y decomposition of a single-qubit gate.

Σημείωση[επεξεργασία | επεξεργασία κώδικα]

The Pauli matrices do not commute.

  • Physically this is because one cannot simultaneously measure spin in more than one direction
  • Mathematically this is because SU(2) is non-Abelian

The commutation relation is σiσj=2iεijkσk

Υποσημειώσεις[επεξεργασία | επεξεργασία κώδικα]

  1. http://planetmath.org/encyclopedia/PauliMatrices.html
  2. Nakahara, Mikio (2003), Geometry, topology, and physics (2nd έκδοση), CRC Press, ISBN 978-0-7503-0606-5 , pp. xxii.

Εσωτερική Αρθρογραφία[επεξεργασία | επεξεργασία κώδικα]

Βιβλιογραφία[επεξεργασία | επεξεργασία κώδικα]

  • Liboff, Richard L. (2002). Introductory Quantum Mechanics. Addison-Wesley. ISBN 0-8053-8714-5. 
  • Schiff, Leonard I. (1968). Quantum Mechanics. McGraw-Hill. ISBN 007-Y85643-5. 
  • Leonhardt, Ulf (2010). Essential Quantum Optics. Cambridge University Press. ISBN 0-521-14505-8. 

Ιστογραφία[επεξεργασία | επεξεργασία κώδικα]


Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog.png



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Community content is available under CC-BY-SA unless otherwise noted.