Science Wiki
Register
Advertisement

Απόδειξις

Mathematical Proof



Μαθηματική απόδειξη' είναι μια πειστική λογική παρουσίαση ότι μία Μαθηματική Πρόταση είναι ορθή, μέσα στα αποδεκτά πλαίσια της Επιστήμης των Μαθηματικών.


Ετυμολογία[]

Η ονομασία " Απόδειξη" σχετίζεται ετυμολογικά με την λέξη "δείκτης".


Εισαγωγή[]

Η απόδειξη παράγεται αναγωγικά και όχι εμπειρικά. Δηλαδή, η απόδειξη πρέπει να δείχνει ότι μια πρόταση είναι αληθής για όλες τις περιπτώσεις που εφαρμόζεται, χωρίς καμία εξαίρεση. Μια πρόταση χωρίς απόδειξη για την οποία πιστεύεται ή υπάρχουν ισχυρές υποψίες ότι ισχύει, λέγεται εικασία.

Οι αποδείξεις χρησιμοποιούν τη λογική αλλά συνήθως περιέχουν σε κάποιο βαθμό Φυσική Γλώσσα, που συνήθως επιτρέπει κάποια ορισμένη αμφισημία.

Όντως, η συντριπτική πλειοψηφία των αποδείξεων στα γραπτά μαθηματικά μπορούν να θεωρηθούν εφαρμογές της Άτυπης Λογικής. Αμιγώς τυπικές αποδείξεις μελετώνται από τη Θεωρία Αποδείξεων.

Η διάκριση μεταξύ άτυπης και τυπικής απόδειξης έχει οδηγήσει σε επανεξέταση της τρέχουσας και ιστορικής μαθηματικής πρακτικής, Ημι-εμπειρικά Μαθηματικά και τα λεγόμενα Λαϊκά Μαθηματικά. Η φιλοσοφία των Μαθηματικών ασχολείται με το ρόλο της Γλώσσας και της Λογικής στις αποδείξεις, καθώς και των ίδιων των Μαθηματικών ως γλώσσα.

Άσχετα από το βαθμό της τυπικότητας που ακολουθείται, το αποτέλεσμα που αποδεικνύεται λέγεται Μαθηματικό Θεώρημα.

Σε μια εντελώς τυπική απόδειξη αυτό είναι η τελευταία γραμμή, και η απόδειξη δείχνει πως αυτό ακολουθεί από τα αξιώματα μόνο, με εφαρμογή των κανόνων συναγωγής.

Όταν ένα θεώρημα έχει αποδειχθεί, μπορεί να χρησιμοποιηθεί ως βάση για την απόδειξη άλλων προτάσεων. Ένα θεώρημα μπορεί να λέγεται και Μαθηματικό Λήμμα αν χρησιμοποιείται ως βήμα στην απόδειξη ενός θεωρήματος.

Τα αξιώματα είναι οι προτάσεις αυτές που δεν γίνεται, ή δεν χρειάζεται, να αποδεικτούν. Αυτά ήταν στο παρελθόν η βασική μελέτη των φιλόσοφων των μαθηματικών, ενώ πρόσφατα εστιάζουν περισσότερο στη Μαθηματική Πρακτική, δηλαδή τι αποτελεί αποδεκτή τακτική.


Μέθοδοι απόδειξης[]

Ευθεία απόδειξη[]

Στην ευθεία απόδειξη, το συμπέρασμα καθιερώνεται με το λογικό συνδυασμό των αξιωμάτων, των ορισμών και των προηγούμενων θεωρημάτων. Για παράδειγμα, μπορεί να δειχθεί με ευθεία απόδειξη ότι το άθροισμα δυο άρτιων αριθμών είναι πάντα άρτιος:

Για κάθε δυο άρτιους αριθμούς και μπορεί να γραφεί και για κάποιους ακέραιους και , αφού τόσο το όσο και το είναι πολλαπλάσια του 2. Αλλά το άθροισμα είναι επίσης πολλαπλάσιο του 2, επομένως είναι άρτιος αριθμός εξ ορισμού.

Η απόδειξη αυτή χρησιμοποιεί τον ορισμό των άρτιων ακέραιων, αλλά και την επιμεριστικότητα.

Μαθηματική Επαγωγή[]

Στην απόδειξη με επαγωγή, αποδεικνύεται πρώτα μια "βασική περίπτωση", και στη συνέχεια χρησιμοποιειται ένας "επαγωγικός κανόνας" για να δείξει μια (συχνά άπειρη) σειρά από άλλες περιπτώσεις. Αφού η βασική περίπτωση είναι αληθής, η απειρότητα των άλλων περιπτώσεων θα πρέπει επίσης να ισχύει, ακόμα κι αν δεν μπορούν όλες να αποδειχθούν ευθέως λόγω του άπειρου αριθμού τους. Ένα υποσύνολο της επαγωγής είναι η Άπειρη Κάθοδος, που χρησιμοποιείται στην απόδειξη ότι η τετραγωνική ρίζα του 2 είναι άρρητος αριθμός.

Η αρχή της μαθηματικής επαγωγής ορίζει ότι:

Έστω N = { 1, 2, 3, 4, ... } το σύνολο των φυσικών αριθμών και P(n) μια μαθηματική πρόταση που περιέχει τον φυσικό αριθμό n που ανήκει στο N, έτσι ώστε (i) P(1) ισχύει, δυλαδή, P(n) να είναι αλήθεια για n = 1 (ii) P(m + 1) ισχύει όταν P(m) ισχύει, δηλαδή P(m) συνεπάγεται ότι P(m + 1). Τότε, P(n) ισχύει για όλους τους φυσικούς αριθμούς n.

Απόδειξη με αντιμετάθεση[]

Πρότυπο:Κύριο Η απόδειξη με αντιμετάθεση δείχνει το συμπέρασμα "αν p τότε q" αποδεικνύοντας το ισοδύναμο αντιθετοαντίστροφο "αν όχι q τότε όχι p".

Εις Άτοπο Απαγωγή[]

Στην απόδειξη με αντίφαση (γνωστή και ως εις άτοπον απαγωγή, ή reductio ad absurdum στα Λατινικά), δείχνεται ότι αν κάποια πρόταση ήταν ψευδής, τότε συμβαίνει μια λογική αντίφαση, επομένως η αρχική πρόταση θα πρέπει να είναι αληθής.

Αυτή είναι ίσως η πιο συχνά απαντώμενη μέθοδος σε μαθηματικές αποδείξεις. Μια διάσημη απόδειξη που κάνει χρήση αυτής της μεθόδου είναι η απόδειξη ότι το είναι άρρητος:

Έστω ότι ο είναι ρητός, δηλαδή όπου a και b είναι μη μηδενικοί ακέραιοι πρώτοι μεταξύ τους (ορισμός ρητών αριθμών). Έτσι, . Υψώνοντας και τις δυο πλευρές στο τετράγωνο δίνει 2b2 = a2. Αφού το 2 διαιρεί το αριστερό μέρος, θα πρέπει και να διαιρεί το δεξί μέλος της εξίσωσης, μιας και είναι ίσα. Επομένως, ο a2 είναι άρτιος, που σημαίνει ότι ο a θα πρέπει επίσης να είναι άρτιος. Μπορούμε δηλαδή να γράψουμε a = 2c, όπου c είναι ακέραιος. Αντικατάσταση στην αρχική εξίσωση δίνει 2b2 = (2c)2 = 4c2. Διαιρώντας και τις δυο πλευρές με το 2 δίνει b2 = 2c2. Αλλά τότε, ακολουθώντας το ίδιο επιχείρημα, το 2 διαιρεί το b2, άρα και το b είναι άρτιος. Όμως, αν οι a και b είναι και οι δυο άρτιοι, έχουν κοινό διαιρέτη (το 2). Αυτό έρχεται σε αντίθεση με την υπόθεση ότι είναι πρώτοι μεταξύ τους, άρα πρέπει να συμπεράνουμε ότι ο είναι άρρητος.

Κατασκευαστική Απόδειξη[]

Κατασκευαστική απόδειξη ή απόδειξη με παράδειγμα, είναι η κατασκευή ενός παραδείγματος με την ιδιότητα να δείχνει ότι υπάρχει κάτι που έχει την ιδιότητα. Ο Joseph Liouville, για παράδειγμα, απέδειξε την ύπαρξη υπερβατικών αριθμών κατασκευάζοντας έναν παράδειγμα.

Εξαντλητική Απόδειξη[]

Πρότυπο:Κύριο

Στην 'απόδειξη με εξάντληση, το συμπέρασμα αποδεικνύεται διαιρώντας το σε έναν πεπερασμένο αριθμό περιπτώσεων, και αποδεικνύοντας την κάθε μια ξεχωριστά. Ο αριθμός των περιπτώσεων μπορεί μερικές φορές να γίνει πολύ μεγάλος. Για παράδειγμα, η πρώτη απόδειξη του θεωρήματος τεσσάρων χρωμάτων ήταν απόδειξη με εξάντληση με 1936 περιπτώσεις. Η απόδειξη αυτή ήταν επίμαχη γιατί η πλειοψηφία των περιπτώσεων ελέγχθηκαν από ένα πρόγραμμα υπολογιστή, κι όχι με το χέρι. Η μικρότερη γνωστή απόδειξη για το θεώρημα τεσσάρων χρωμάτων έχει και σήμερα πάνω από 600 περιπτώσεις.

Πιθανοτική Απόδειξη[]

Πιθανοτική απόδειξη είναι αυτή όπου ένα παράδειγμα δείχνεται ότι υπάρχει, με βεβαιότητα, χρησιμοποιώντας μεθόδους της θεωρίας πιθανοτήτων. Αυτό δεν είναι το ίδιο με το να δειχθεί ότι μια πρόταση είναι 'πιθανώς' ορθή. Ο τελευταίος συλλογισμός είναι 'επιχείρημα αληθοφάνειας' και δεν αποτελεί απόδειξη.

Συνδυαστική Απόδειξη[]

Μια συνδυαστική απόδειξη δείχνει την ισοδυναμία διαφορετικών προτάσεων δείχνοντας ότι μετρούν το ίδιο αντικείμενο με διαφορετικούς τρόπους. Συνήθως, χρησιμοποιείται μια αμφίεση (bijection) για να δείξει ότι οι δυο ερμηνείες δίνουν το ίδιο αποτέλεσμα.

Μη Κατασκευαστική Απόδειξη[]

Μια μη κατασκευαστική απόδειξη δείχνει ότι ένα συγκεκριμένο μαθηματικό αντικείμενο πρέπει να υπάρχει (π.χ. "κάποιο X ικανοποιεί το f(X)"), χωρίς να εξηγήσει πως βρίσκεται ένα τέτοιο αντικείμενο. Συχνά αυτό παίρνει τη μορφή απόδειξης με αντίφαση, όπου η μη ύπαρξη του αντικειμένου αποδεικνύεται αδύνατη. Αντίθετα, μια κατασκευαστική απόδειξη στηρίζει την ύπαρξη ενός αντικειμένου δίνοντας μια μέθοδο εύρεσής του.

Απουσία απόδειξης ή ανταπόδειξης[]

Για μια τάξη μαθηματικών προτάσεων δεν υπάρχει απόδειξη ή ανταπόδειξη, συνήθως μόνο στην αξιωματική Συνολοθεωρία. Ένα παράδειγμα είναι η υπόθεση του συνεχούς. Υπό την υπόθεση ότι η αξιωματική θεωρία συνόλων είναι συνεπής, η ύπαρξη τέτοιων προτάσεων ακολουθεί από το θεώρημα μη πληρότητας του Γκέντελ. Το αν μια συγκεκριμένη πρόταση που δεν έχει αποδειχθεί μπορεί ή όχι να αποδειχθεί με χρήση ενός δεδομένου συνόλου από αξιώματα δεν είναι πάντα προφανές, και μπορεί να είναι δύσκολο να απαντηθεί.


Τέλος απόδειξης[]

Πρότυπο:Κύριο Ορισμένες φορές, τα αρχικά "Q.E.D." γράφονται για να δείξουν το τέλος μιας απόδειξης Τα αρχικά σημαίνουν "Quod Erat Demonstrandum", που στα Λατινικά σημαίνει "αυτό που έπρεπε να δειχθεί". Εναλλακτικά χρησιμοποιείται ένα τετράγωνο ορθογώνιο, όπως το ή .

Στα ελληνικά χρησιμοποιείται και το "Ο.Ε.Δ" από το αρχικό αρχαίο ελληνικό "όπερ έδει δείξαι" με την ίδια σημασία, μετάφραση του οποίου είναι η λατινική έκφραση.


Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement