Μαθηματική Δομή
- Μία δομή.
Ετυμολογία[]
Η ονομασία "Μαθηματική" σχετίζεται ετυμολογικά με την λέξη "μαθηματικά".
Εισαγωγή[]
In mathematics, a structure on a set is an additional mathematical object that, in some manner, attaches (or relates) to that set to endow it with some additional meaning or significance.
A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and categories.
Sometimes, a set is endowed with more than one structure simultaneously; this enables mathematicians to study it more richly.
- For example, an ordering imposes a rigid form, shape, or topology on the set.
- As another example, if a set has both a topology and is a group, and these two structures are related in a certain way, the set becomes a topological group.
Mappings between sets which preserve structures (so that structures in the source or domain are mapped to equivalent structures in the destination or codomain) are of special interest in many fields of mathematics.
Examples are:
- homomorphisms, which preserve algebraic structures;
- homeomorphisms, which preserve topological structures; and
- diffeomorphisms, which preserve differential structures.
History[]
In 1939, the French group with the pseudonym Nicolas Bourbaki saw structures as the root of mathematics. They first mentioned them in their "Fascicule" of Theory of Sets and expanded it into Chapter IV of the 1957 edition.[1] They identified three mother structures: algebraic, topological, and order.[2]
Example: the real numbers[]
The set of real numbers has several standard structures:
- an order: each number is either less or more than any other number.
- algebraic structure: there are operations of multiplication and addition that make it into a field.
- a measure: intervals along the real line have a specific length, which can be extended to the Lebesgue measure on many of its subsets.
- a metric: there is a notion of distance between points.
- a geometry: it is equipped with a metric and is flat.
- a topology: there is a notion of open sets.
There are interfaces among these:
- Its order and, independently, its metric structure induce its topology.
- Its order and algebraic structure make it into an ordered field.
- Its algebraic structure and topology make it into a Lie group, a type of topological group.
Υποσημειώσεις[]
- ↑ Corry, Leo (September 1992). "Nicolas Bourbaki and the concept of mathematical structure". Synthese 92 (3): 315–348. doi: .
- ↑ Wells, Richard B. (2010). Biological signal processing and computational neuroscience. σελ. 296–335. http://www.mrc.uidaho.edu/~rwells/techdocs/Biological%20Signal%20Processing/Chapter%2010%20Mathematical%20Structures.pdf. Ανακτήθηκε την 7 April 2016.
Εσωτερική Αρθρογραφία[]
- Abstract structure
- Algebraic structure
- Intuitionistic type theory
- δόμημα
- Μαθηματικό Δόμημα
- Αιτιακή Δομή (= Causal structure)
- Δομική
- Δομική Μηχανική
- υποδομή
- Οικοδόμημα
Βιβλιογραφία[]
- Foldes, Stephan (1994). Fundamental Structures of Algebra and Discrete Mathematics. Hoboken: John Wiley & Sons. ISBN 9781118031438.
- Hegedus, Stephen John; Moreno-Armella, Luis (2011). "The emergence of mathematical structures". Educational Studies in Mathematics 77 (2): 369–388. doi: .
- Kolman, Bernard; Busby, Robert C.; Ross, Sharon Cutler (2000). Discrete mathematical structures (4th έκδοση). Upper Saddle River, NJ: Prentice Hall. ISBN 978-0-13-083143-9.
- Malik, D.S.; Sen, M.K. (2004). Discrete mathematical structures : theory and applications. Australia: Thomson/Course Technology. ISBN 978-0-619-21558-3.
- Pudlák, Pavel (2013). Mathematical structures. Logical foundations of mathematics and computational complexity a gentle introduction. Cham: Springer. σελ. 2–24. ISBN 9783319001197.
- Senechal, M. (21 May 1993). "Mathematical Structures". Science 260 (5111): 1170–1173. doi: .
Ιστογραφία[]
- Ομώνυμο άρθρο στην Βικιπαίδεια
- Ομώνυμο άρθρο στην Livepedia
- Mathematical structures in computer science
- [ ]
Κίνδυνοι Χρήσης |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν
- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)