Math Characters - copy and paste them
https://en.wikipedia.org/wiki/Glossary_of_mathematical_symbols
https://en.wikipedia.org/w/index.php?title=Wikipedia:LaTeX_symbols&redirect=no
https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols
https://www.compart.com/en/unicode/category/Sm
http://patorjk.com/text-color-fader/
https://www.latex4technics.com/
https://www.compart.com/en/unicode/
𝕊 𝕨 𝕖 𝕖 𝕥 𝕨 𝕖 𝕖 𝕜 𝕒 𝕙 𝕖 𝕒 𝕕 𝕆 ℂ𝕙𝕖𝕞𝕚𝕤𝕥𝕣𝕪 𝕆𝕟𝕝𝕚𝕟𝕖 𝕊𝕥𝕦𝕕𝕪 𝕋
p̂ r̂ x̂ ŷ ẑ ê ĵ î k̂ n̂ b̂ t̂ ŝ v̂
★ ℒℴνℯ ℒiℱℯ ℋ
𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℐ𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒴𝒳𝒵𝒲
𝓐𝓑𝓒𝓓𝓔𝓕𝓖𝓗𝓘𝓚𝓛𝓜𝓝𝓞𝓟𝓠𝓡𝓢𝓨𝓧𝓩𝓦
,
− + ± × ÷ ≠ ≈ ≤ ≥ ∞ ⅛ ¼ ½ ¾ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅜ ⅝ ⅞ ∫ ∂ ∆ ∏ ∐ ∑ √ ∛ ∜ ∟ ∩ ∙ ƒ ƒ ‴ x² a₁₃ ∫ ∈ ∃ ⊆ ≣ ℝ ∪ 𝑥 GREEK ALPHABET Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Ϊ
greek alphabet α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ ς σ τ υ φ χ ψ ω ϑ ϒ ϖ
π • · … ′ ″ ‾ ⁄ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ ¸ ¹ º »
⁐ ⁉ ⁔ ⁚ ℵ ℘ ′ ℝ ℂ ℕ ℙ ℚ ℤ
Assorted arrows, etc. ← → ↓ ↑ ↔ ↵ ⇐ ⇑ ⇒ ⇓ ⇔ ‾ ← → ➜ ↑ ↓ † ‡ • … ✔
∀ ∂ ∃ ∅ ∄ ∇ 𝛻 𝛁 𝜵 𝞩 ∈ ∉ ∋ ∌ ∍ ∏ ∑ ¬
∗ · ⦁ ⋆ ⋇ ⨳ ◾ ◽ ◼ ◻ ⨀ ⨁ ⨂ ∧ ⨉ ⨥ +
√ ∝ ∞ ∠ ∧ ⊻ ⊼ ⊽ ∨ ∩ ∪ ∫ ∴ ∼ ħ
< > ≅ ≈ ≠ ≡ ≤ ≥ ⊂ ⊃ ⊄ ⊅ ⊈ ⊉ ⊊ ⊋ ⋄ ⊆ ⊇ ⊕ ⊗ ⊝ ⋅
Superscripts ⁰ ⁱ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ⁱ ¹ ² ³ ᵃ ᵇ ᶜ ᵈ ᵉ ᶠ ᵍ ʰ ⁱ ʲ ᵏ ˡ ᵐ ⁿ ᵒ ᵖ ʳ ˢ ᵗ ᵘ ᵛ ʷ ˣ ʸ ᶻ
Subscripts ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ᵢ ᵣ ᵤ ᵥ ₓ ᵥ ᵦ ᵧ ᵨ ᵩ ᵪ ₐ ₑ ₕ ᵢ ₖ ₗ ₘ ₙ ₒ ₚ ᵣ ₛ ₜ ᵤ ᵥ ₓ ᵧ
⌈ ⌉ ⌊ ⌋ ⊤ ⊥ ⊦ ⊦ ⊧ 〈 〉 ◊ ♠ ♣ ♥ ♦
x̄ x̂ ° µ ‰ ‱ ′ ∫ ∂ ∆ ∇ ∬ ∭ ⨌ ∮ ∯ ∰ ∱ ∲ ⨑ ∳ ℘
₁•₁ Ꮛ⁴ ≅ Ꮛ³ × Ꮛ¹
₁•₂ τ(Ꮛᵃ) ≡ Vec(Ꮛᵃ) = 𝔼ᵃ
₁•₃ τ⁻¹(𝔼ᵃ) ≡ Aff(𝔼ᵃ) = Ꮛᵃ
₂•₁ 𝒜⁴ = {Ω³ ; ↑⁴} ∧ 𝒦₄ = {Ω³ ; ↓₄}
₂•₂ 𝒜⁴ ∩ 𝒦₄ = ∅ ∧ 𝒜⁴ ⊔ 𝒦₄ ⊂ Ꮛ⁴
₂•₃ Sup(𝒜⁴) < s₀ < s, ∃s₀, ∀s ∈ 𝒜⁴
₂•₄ Inf(𝒦₄) > i₀ > i, ∃i₀, ∀i ∈ 𝒦₄
₂•₅ Inf(𝒦₄) < e < Sup(𝒜⁴), ∀e ∈ Ꮛ⁴
₂•₆ τ[ Sup(𝒜⁴) ] - τ[ Inf(𝒦₄) ] ∈ 𝔼⁴
₃•₁ ±↑⁴ = ∓↓₄
₃•₂ ω(↑⁴) > ω(↓₄)
₃•₃ ||↑⁴||⁺ = lim (||↑⁴|| ⊕ 𝕖)
₃•₄ ||↑⁴||⁻ = lim (||↑⁴|| ⊝ 𝕖)
₃•₅ ± ⟦↑↓⟧ = ∓⟦↓↑⟧ = ||↑⁴||⁺ - ||↓₄||⁻ ≠ 𝟘
𝙏𝙤𝙥𝙤𝙡𝙤𝙜𝙞𝙘𝙖𝙡 𝙀𝙣𝙩𝙞𝙩𝙞𝙚𝙨 𝙤𝙛 4-xt-𝙎𝙥𝙖𝙘𝙚 Ꮛ⁴:
𝘼𝙣𝙖 (𝒜⁴) & 𝙆𝙖𝙩𝙖 (𝒦₄)
(𝒜⁴ , ↑⁴)
(𝒦₄ , ↓₄)
₄ミ("〜‿〜")彡⁴
₁•₁ Ꮛ⁴ ≅ Ꮛ³ × Ꮛ¹
₁•₂ τ(Ꮛᵃ) ≡ Vec(Ꮛᵃ) = 𝔼ᵃ
₁•₃ τ⁻¹(𝔼ᵃ) ≡ Aff(𝔼ᵃ) = Ꮛᵃ
₂•₁ 𝒜⁴ = {Ω³ ; ↑⁴} ∧ 𝒦₄ = {Ω³ ; ↓₄}
₂•₂ 𝒜⁴ ∩ 𝒦₄ = ∅ ∧ 𝒜⁴ ⊔ 𝒦₄ ⊂ Ꮛ⁴
₂•₃ Sup(𝒜⁴) < s₀ < s, ∃s₀, ∀s ∈ 𝒜⁴
₂•₄ Inf(𝒦₄) > i₀ > i, ∃i₀, ∀i ∈ 𝒦₄
₂•₅ Inf(𝒦₄) < e < Sup(𝒜⁴), ∀e ∈ Ꮛ⁴
₂•₆ τ[ Sup(𝒜⁴) ] - τ[ Inf(𝒦₄) ] ∈ 𝔼⁴
₃•₁ ±↑⁴ = ∓↓₄
₃•₂ ω(↑⁴) > ω(↓₄)
₃•₃ ||↑⁴||⁺ = lim (||↑⁴|| ⊕ 𝕖)
₃•₄ ||↑⁴||⁻ = lim (||↑⁴|| ⊝ 𝕖)
₃•₅ ± ⟦↑↓⟧ = ∓⟦↓↑⟧ = ||↑⁴||⁺ - ||↓₄||⁻ ≠ 𝟘
∀𝕖 ∈ {𝕖 ∈ ℝ | |𝕖| ≪ ℓ, ∀ℓ ∈ ℝ / {∀ℓ ≤ 0}}
∀(Ω³ ; 𝒜⁴ , 𝒦₄ ; a) ⊂ (Ꮛ³ ; Ꮛ⁴ ; {1,3,4})