Advertisement
Math-symbols-01-goog.jpg
Μαθηματικό Σύμβολο

Math Characters - copy and paste them


https://en.wikipedia.org/w/index.php?title=Wikipedia:LaTeX_symbols&redirect=no


https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols


https://www.compart.com/en/unicode/category/Sm


http://patorjk.com/text-color-fader/


http://latex2png.com/


https://www.latex4technics.com/


𝕊 𝕨 𝕖 𝕖 𝕥 𝕨 𝕖 𝕖 𝕜 𝕒 𝕙 𝕖 𝕒 𝕕 𝕆 ℂ𝕙𝕖𝕞𝕚𝕤𝕥𝕣𝕪 𝕆𝕟𝕝𝕚𝕟𝕖 𝕊𝕥𝕦𝕕𝕪

Circumflex

p̂ r̂ x̂ ŷ ẑ ê ĵ î k̂ n̂ b̂ t̂ ŝ v̂

,

/x

− + ± × ÷ ≠ ≈ ≤ ≥ ∞ ⅛ ¼ ½ ¾ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅜ ⅝ ⅞ ∫ ∂ ∆ ∏ ∐ ∑ √ ∛ ∜ ∟ ∩ ∙ ƒ ƒ ‴ x² a₁₃ ∫ ∈ ∃ ⊆ ≣ ℝ ∪ 𝑥 GREEK ALPHABET Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Ϊ

greek alphabet α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ ς σ τ υ φ χ ψ ω ϑ ϒ ϖ

π • · … ′ ″ ‾ ⁄ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ­ ® ¯ ° ± ² ³ ´ µ ¶ ¸ ¹ º »

⁐ ⁉ ⁔ ⁚ ℵ ℘ ′ ℝ ℂ ℕ ℙ ℚ ℤ

Assorted arrows, etc. ← → ↓ ↑ ↔ ↵ ⇐ ⇑ ⇒ ⇓ ⇔ ‾ ← → ➜ ↑ ↓ † ‡ • … ✔

∀ ∂ ∃ ∅ ∄ ∇ ∈ ∉ ∋ ∌ ∍ ∏ ∑ ¬

∗ · ⦁ ⋆ ⋇ ⨳ ◾ ◽ ◼ ◻ ⨀ ⨁ ⨂ ∧ ⨉ ⨥ +

√ ∝ ∞ ∠ ∧ ⊻ ⊼ ⊽ ∨ ∩ ∪ ∫ ∴ ∼ ħ

< > ≅ ≈ ≠ ≡ ≤ ≥ ⊂ ⊃ ⊄ ⊅ ⊈ ⊉ ⊊ ⊋ ⋄ ⊆ ⊇ ⊕ ⊗ ⊝ ⋅

Superscripts ⁰ ⁱ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ⁱ ¹ ² ³

Subscripts ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ᵢ ᵣ ᵤ ᵥ ₓ ᵥ ᵦ ᵧ ᵨ ᵩ ᵪ

⌈ ⌉ ⌊ ⌋ ⊤ ⊥ ⊦ ⊦ ⊧ 〈 〉 ◊ ♠ ♣ ♥ ♦

x̄ x̂ ° µ ‰ ‱ ′ ∫ ∂ ∆ ∇ ∬ ∭ ⨌ ∮ ∯ ∰ ∱ ∲ ⨑ ∳ ℘


₁•₁ Ꮛ⁴ ≅ Ꮛ³ × Ꮛ¹

₁•₂ τ(Ꮛᵃ) ≡ Vec(Ꮛᵃ) = 𝔼ᵃ

₁•₃ τ⁻¹(𝔼ᵃ) ≡ Aff(𝔼ᵃ) = Ꮛᵃ

₂•₁ 𝒜⁴ = {Ω³ ; ↑⁴} ∧ 𝒦₄ = {Ω³ ; ↓₄}

₂•₂ 𝒜⁴ ∩ 𝒦₄ = ∅ ∧ 𝒜⁴ ⊔ 𝒦₄ ⊂ Ꮛ⁴

₂•₃ Sup(𝒜⁴) < s₀ < s, ∃s₀, ∀s ∈ 𝒜⁴

₂•₄ Inf(𝒦₄) > i₀ > i, ∃i₀, ∀i ∈ 𝒦₄

₂•₅ Inf(𝒦₄) < e < Sup(𝒜⁴), ∀e ∈ Ꮛ⁴

₂•₆ τ[ Sup(𝒜⁴) ] - τ[ Inf(𝒦₄) ] ∈ 𝔼⁴

₃•₁ ±↑⁴ = ∓↓₄

₃•₂ ω(↑⁴) > ω(↓₄)

₃•₃ ||↑⁴||⁺ = lim (||↑⁴|| ⊕ 𝕖)

₃•₄ ||↑⁴||⁻ = lim (||↑⁴|| ⊝ 𝕖)

₃•₅ ± ⟦↑↓⟧ = ∓⟦↓↑⟧ = ||↑⁴||⁺ - ||↓₄||⁻ ≠ 𝟘


𝙏𝙤𝙥𝙤𝙡𝙤𝙜𝙞𝙘𝙖𝙡 𝙀𝙣𝙩𝙞𝙩𝙞𝙚𝙨 𝙤𝙛 4-xt-𝙎𝙥𝙖𝙘𝙚 Ꮛ⁴:

𝘼𝙣𝙖 (𝒜⁴) & 𝙆𝙖𝙩𝙖 (𝒦₄)

   (𝒜⁴ , ↑⁴)
    (𝒦₄ , ↓₄)

₄ミ("〜‿〜")彡⁴

₁•₁ Ꮛ⁴ ≅ Ꮛ³ × Ꮛ¹

₁•₂ τ(Ꮛᵃ) ≡ Vec(Ꮛᵃ) = 𝔼ᵃ

₁•₃ τ⁻¹(𝔼ᵃ) ≡ Aff(𝔼ᵃ) = Ꮛᵃ

₂•₁ 𝒜⁴ = {Ω³ ; ↑⁴} ∧ 𝒦₄ = {Ω³ ; ↓₄}

₂•₂ 𝒜⁴ ∩ 𝒦₄ = ∅ ∧ 𝒜⁴ ⊔ 𝒦₄ ⊂ Ꮛ⁴

₂•₃ Sup(𝒜⁴) < s₀ < s, ∃s₀, ∀s ∈ 𝒜⁴

₂•₄ Inf(𝒦₄) > i₀ > i, ∃i₀, ∀i ∈ 𝒦₄

₂•₅ Inf(𝒦₄) < e < Sup(𝒜⁴), ∀e ∈ Ꮛ⁴

₂•₆ τ[ Sup(𝒜⁴) ] - τ[ Inf(𝒦₄) ] ∈ 𝔼⁴

₃•₁ ±↑⁴ = ∓↓₄

₃•₂ ω(↑⁴) > ω(↓₄)

₃•₃ ||↑⁴||⁺ = lim (||↑⁴|| ⊕ 𝕖)

₃•₄ ||↑⁴||⁻ = lim (||↑⁴|| ⊝ 𝕖)

₃•₅ ± ⟦↑↓⟧ = ∓⟦↓↑⟧ = ||↑⁴||⁺ - ||↓₄||⁻ ≠ 𝟘

∀𝕖 ∈ {𝕖 ∈ ℝ | |𝕖| ≪ ℓ, ∀ℓ ∈ ℝ / {∀ℓ ≤ 0}}

∀(Ω³ ; 𝒜⁴ , 𝒦₄ ; a) ⊂ (Ꮛ³ ; Ꮛ⁴ ; {1,3,4})

TinyTextGenerator bold-italic-text

Community content is available under CC-BY-SA unless otherwise noted.