Science Wiki
Advertisement

Θεωρία

Glossary of module theory, List of mathematical theories


Mathematical-Theory-01-goog

Μαθηματικές Θεωρίες
Προσεγγισιακή Θεωρία
(Approximation theory)
Ασυμπτωτική Θεωρία
(Asymptotic theory)
Αυτοματική Θεωρία
(Automata theory)
Διακλαδωσιακή Θεωρία
(Bifurcation theory)
Πλεξιδοθεωρία (Braid theory) Καταστροφοθεωρία Θεωρία
(Catastrophe theory)
Κατηγοροθεωρία (Category theory) Χαοτική Θεωρία (Chaos theory) Χαρακτηροθεωρία
(Character theory)
Θεωρία (Choquet theory) Κωδικοθεωρία (Coding theory) Θεωρία (Cohomology theory) Θεωρία (Computation theory) Παραμορφωσιακή Θεωρία
(Deformation theory)
Διαστασοθεωρία (Dimension theory) Κατανομική Θεωρία
(Distribution theory)
Πεδιακή Θεωρία (Field theory) Εξαλειπτική Θεωρία
(Elimination theory)
Γραφοθεωρία (graph theory) Θεωρία Galois (Galois theory) Παιγνιοθεωρία (Game theory) Ομαδοθεωρία (Group theory) Θεωρία Hodge (Hodge theory) Ομολογοθεωρία (Homology theory) Ομοτοποθεωρία (Homotopy theory) Πληροφορική Θεωρία
(Information theory)
Αναλλοιωτική Θεωρία
(Invariant theory)
Θεωρία K (K-theory) Κομβοθεωρία (Knot theory) Θεωρία L (L-theory) Θεωρία M (M-theory) Μητροθεωρία (Matrix theory) Μετροθεωρία (Measure theory) Προτυπική Θεωρία
(Model theory)
Θεωρία Morse (Morse theory) Μοδιοθεωρία (Module theory) Δικτυακή Θεωρία (Network theory) Θεωρία Nevanlinna
(Nevanlinna theory)
Αριθμοθεωρία (Number theory) Παρεμποδιακή Θεωρία
(Obstruction theory)
Τελεστική Θεωρία (Operator theory) Διαταξιακή Θεωρία (Order theory) Διηθητική Θεωρία
(Percolation theory)
Διαταρακτική Θεωρία
(Perturbation theory)
Πιθανοτική Θεωρία
(Probability theory)
Αποδειξιακή Θεωρία (Proof theory) Κβαντική Θεωρία (Quantum theory) Στοιχισιακή Θεωρία (Queue theory) Αναδρομοθεωρία (Recursion theory) Αναπαραστασιακή Θεωρία
(Representation theory)
Δακτυλιοθεωρία (Ring theory) Σχεδιοθεωρία (Scheme theory) Θεωρία Seiberg-Witten
(Seiberg-Witten theory)
Τυποθεωρία (Set theory) Δραγμοθεωρία (Sheaf theory) Μοναδικοτική Θεωρία
(Singularity theory)
Φασματοθεωρία (Spectral theory) Χορδοθεωρία (String theory) Χειρουργοθεωρία (Surgery theory) Εξισωσοθεωρία
(Theory of equations)
Τοποθεωρία (Topos theory) Συστροφική Θεωρία
(Twistor theory)
Τυποθεωρία (Type theory)

Theory-01-goog

Επιστημονική Θεωρία
Φυσικές Θεωρίες Χημικές ΘεωρίεςΓεωλογικές Θεωρίες Βιολογικές Θεωρίες Οικονομικές Θεωρίες Φιλοσοφικές Θεωρίες

- Μια Μαθηματική Θεωρία.

Ετυμολογία[]

Η ονομασία "μαθηματική" σχετίζεται ετυμολογικά με την λέξη "Μαθηματικά".

Εισαγωγή[]

Ορολογία[]

A[]

algebraically compact
algebraically compact module (also called pure injective module) is a module in which all systems of equations can be decided by finitary means. Alternatively, those modules which leave pure-exact sequence exact after applying Hom.
annihilator
1.  The annihilator of a left -module  is the set  . It is a (left) ideal of .
2.  The annihilator of an element  is the set .
Artinian
An Artinian module is a module in which every decreasing chain of submodules becomes stationary after finitely many steps.
associated prime
1.  An associated prime.
Azumaya
Azumaya's theorem says that two decompositions into modules with local endomorphism rings are equivalent.

B[]

balanced
balanced module
basis
A basis of a module  is a set of elements in  such that every element in the module can be expressed as a finite sum of elements in the basis in a unique way.
Beauville–Laszlo
Beauville–Laszlo theorem
bimdule
bimodule

C[]

character
character module
coherent
A coherent module is a finitely generated module whose finitely generated submodules are finitely presented.
completely reducible
Synonymous to "semisimple module".
composition
Jordan Hölder composition series
continuous
continuous module
cyclic
A module is called a cyclic module if it is generated by one element.

D[]

D
A D-module is a module over a ring of differential operators.
dense
dense submodule
direct sum
A direct sum of modules is a module that is the direct sum of the underlying abelian group together with component-wise scalar multiplication.
dual module
The dual module of a module M over a commutative ring R is the module .
Drinfeld
A Drinfeld module is a module over a ring of functions on algebraic curve with coefficients from a finite field.

E[]

Eilenberg–Mazur
Eilenberg–Mazur swindle
elementary
elementary divisor
endomorphism
The endomorphism ring.
essential
Given a module M, an essential submodule N of M is a submodule that every nonzero submodule of M intersects non-trivially.
Ext functor
Ext functor.
extension
Extension of scalars uses a ring homomorphism from R to S to convert R-modules to S-modules.

F[]

faithful
A faithful module  is one where the action of each nonzero  on  is nontrivial (i.e.  for some  in ). Equivalently,  is the zero ideal.
finite
The term "finite module" is another name for a finitely generated module.
finite length
A module of finite length is a module that admits a (finite) composition series.
finite presentation
1.  A finite free presentation of a module M is an exact sequence  where  are finitely generated free modules.
2.  A finitely presented module is a module that admits a finite free presentation.
finitely generated
A module  is finitely generated if there exist finitely many elements  in  such that every element of  is a finite linear combination of those elements with coefficients from the scalar ring .
fitting
fitting ideal
five
Five lemma.
flat
A -module  is called a flat module if the tensor product functor  is exact. In particular, every projective module is flat.
free
A free module is a module that has a basis, or equivalently, one that is isomorphic to a direct sum of copies of the scalar ring .

G[]

Galois
A Galois module is a module over the group ring of a Galois group.

H[]

graded
A module  over a graded ring  is a graded module if  can be expressed as a direct sum  and .
homomorphism
For two left -modules , a group homomorphism  is called homomorphism of -modules if  .
Hom
Hom functor.

I[]

indecomposable
An indecomposable module is a non-zero module that cannot be written as a direct sum of two non-zero submodules. Every simple module is indecomposable (but not conversely).
injective
1.  A -module  is called an injective module if given a -module homomorphism , and an injective -module homomorphism , there exists a -module homomorphism  such that  .
The module Q is injective if the diagram commutes
The following conditions are equivalent:
  • The contravariant functor  is exact.
  • is a injective module.
  • Every short exact sequence  is split.
2.  An injective envelope is a maximal essential extension, or a minimal embedding in an injective module.
3.  An injective cogenerator is an injective module such that every module has a nonzero homomorphism into it.
invariant
invariants
invertible
An invertible module over a commutative ring is a rank-one finite projective module.
irreducible module
Another name for a simple module.

J[]

Jacobson
density theorem

K[]

Kaplansky
Kaplansky's theorem on a projective module says that a projective module over a local ring is free.
Krull–Schmidt
The Krull–Schmidt theorem says that (1) a finite-length module admits an indecomposable decomposition and (2) any two indecomposable decompositions of it are equivalent.

L[]

length
The length of a module is the common length of any composition series of the module; the length is infinite if there is no composition series. Over a field, the length is more commonly known as the dimension.
localization
Localization of a module converts R modules to S modules, where S is a localization of R.

M[]

Mitchell's embedding theorem
Mitchell's embedding theorem
Mittag-Leffler
Mittag-Leffler condition (ML)
module
1.  A left module  over the ring  is an abelian group  with an operation  (called scalar multipliction) satisfies the following condition:
,
2.  A right module  over the ring  is an abelian group  with an operation  satisfies the following condition:
,
3.  All the modules together with all the module homomorphisms between them form the category of modules.

N[]

Noetherian
A Noetherian module is a module such that every submodule is finitely generated. Equivalently, every increasing chain of submodules becomes stationary after finitely many steps.
normal
normal forms for matrices

P[]

principal
A principal indecomposable module is a cyclic indecomposable projective module.
primary
A primary submodule
projective

The characteristic property of projective modules is called lifting. A -module  is called a projective module if given a -module homomorphism , and a surjective -module homomorphism , there exists a -module homomorphism  such that  .
The following conditions are equivalent:
  • The covariant functor  is exact.
  • is a projective module.
  • Every short exact sequence  is split.
  • is a direct summand of free modules.
In particular, every free module is projective.
2.  The projective dimension of a module is the minimal length of (if any) a finite projective resolution of the module; the dimension is infinite if there is no finite projective resolution.
3.  A projective cover is a minimal surjection from a projective module.

Q[]

quotient
Given a left -module  and a submodule , the quotient group  can be made to be a left -module by  for . It is called a quotient module or factor module.

R[]

radical
The radical of a module is the intersection of the maximal submodules. For Artinian modules, the smallest submodule with semisimple quotient.
rational
rational canonical form
reflexive
A reflexive module is a module that is isomorphic via the natural map to its second dual.
resolution
resolution
restriction
Restriction of scalars uses a ring homomorphism from R to S to convert S-modules to R-modules.

S[]

Schanuel
Schanuel's lemma
snake
Snake lemma
socle
The socle is the largest semisimple submodule.
semisimple
A semisimple module is a direct sum of simple modules.
simple
A simple module is a nonzero module whose only submodules are zero and itself.
stably free
A stably free module
structure theorem
The structure theorem for finitely generated modules over a principal ideal domain says that a finitely generated modules over PIDs are finite direct sums of primary cyclic modules.
submodule
Given a -module , an additive subgroup  of  is a submodule if .
support
The support of a module over a commutative ring is the set of prime ideals at which the localizations of the module are nonzero.

T[]

tensor
Tensor product of modules
Tor
Tor functor.
torsionless
A torsionless module.

U[]

uniform
A uniform module is a module in which every two non-zero submodules have a non-zero intersection.

Υποσημειώσεις[]

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement