Ολοκληρωσιμότης


- Μία ιδιότητα
Ετυμολογία[]
Η ονομασία "Ολοκληρωσιμότητα" σχετίζεται ετυμολογικά με την λέξη "ολοκλήρωση".
Εισαγωγή[]
Integrability may refer to:
- Riemann integrability
- Lebesgue integrability; see Lebesgue integral
- Darboux integrability; see Darboux integral
- System integration (Information technology)
- Interoperability (Information technology)
- Integrable system (mathematics, physics)
Ολοκληρωσιμότητα Riemann[]
A bounded function on a compact interval [a, b] is Riemann integrable if and only if it is continuous almost everywhere (the set of its points of discontinuity has measure zero, in the sense of Lebesgue measure).
This is known as the Lebesgue integrability condition or Lebesgue's criterion for Riemann integrability or the Riemann–Lebesgue theorem.[1] The criterion has nothing to do with the Lebesgue integral. It is due to Lebesgue and uses his measure zero, but makes use of neither Lebesgue's general measure or integral.
The integrability condition can be proven in various ways.
In particular, any set that is at most countable has Lebesgue measure zero, and thus a bounded function (on a compact interval) with only finitely or countably many discontinuities is Riemann integrable.
An indicator function of a bounded set is Riemann-integrable if and only if the set is Jordan measurable.
The Riemann integral can be interpreted measure-theoretically as the integral with respect to the Jordan measure.
If a real-valued function is monotone on the interval [a, b] it is Riemann-integrable, since its set of discontinuities is at most countable, and therefore of Lebesgue measure zero.
If a real-valued function on [a, b] is Riemann-integrable, it is Lebesgue-integrable. That is, Riemann-integrability is a stronger (meaning more difficult to satisfy) condition than Lebesgue-integrability.
If fn is a uniformly convergent sequence on [a, b] with limit f , then Riemann integrability of all fn implies Riemann integrability of f , and
However, the Lebesgue monotone convergence theorem (on a monotone pointwise limit) does not hold. In Riemann integration, taking limits under the integral sign is far more difficult to logically justify than in Lebesgue integration.
Υποσημειώσεις[]
- ↑ Πρότυπο:Harvnb
Εσωτερική Αρθρογραφία[]
- διαφορικότητα
- διαφορισιμότητα
- Ολοκληρωτικότητα
- ολοκληρωσιμότητα
- διαπερασιμότητα
- Επιδεκτικότητα
- επιτρεπτότητα (Permittivity)
- συνεκτικότητα
Βιβλιογραφία[]
Ιστογραφία[]
![]() ![]() |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)