Science Wiki
Advertisement

Φαινόμενον του Παρατηρητού

Observer's Effect


Effects-observer-03-goog

Φαινόμενο Παρατηρητή

Effects-Observer-Humans-04-goog

Φαινόμενο Παρατηρητή

Effects-observer-01-goog

Φαινόμενο Παρατηρητή

Effects-Observer-Humans-01-goog

Φαινόμενο Παρατηρητή

Effects-Observer-Humans-02-goog

Φαινόμενο Hawthorne
Συμπεριφορά
The Hawthorne effect (also referred to as the observer effect) is
a type of reactivity in which individuals modify an aspect of
their behavior in response
to their awareness of being observed.
The original research at the Hawthorne Works in Cicero, Illinois,
on lighting changes and work structure changes
such as working hours and break times was originally interpreted by
Elton Mayo and others to mean that paying attention
to overall worker needs would improve productivity.

IonnKorr-01-goog

Ανθρώπινος Φυσικός Παρατηρητής
"καλλιτεχνική αναπαράσταση"

System-Reference-01-goog

Σύστημα Αναφοράς
Κινούμενος και ακίνητος παρατηρητής
παρατηρούν την κίνηση
Υλικού Σώματος (πυραύλου)

- Ένα Φυσικό Φαινόμενο.

Ετυμολογία[]

Η ονομασία "παρατηρητής" σχετίζεται ετυμολογικά με την λέξη " παρατήρηση".

Ορισμός[]

Στη φυσική, το φαινόμενο παρατηρητή είναι η διαταραχή ενός παρατηρούμενου συστήματος από την διαδικασία της παρατήρησης. Αυτό είναι, συχνά, το αποτέλεσμα της χρήσης οργάνων που, αναγκαστικά, αλλάζουν την κατάσταση του αντικειμένου μετρούν με κάποιο τρόπο.

The way a person observes an event influences how it evolves.

The observation can change or alter the event.

φαινόμενο Hawthorne[]

Effects-Hawthorne-01-goog

Φαινόμενο Hawthorne

Το φαινόμενο Hawthorne είναι ένας τύπος αντιδραστικότητας της ανθρώπινης συμπεριφοράς κατά την οποία τα άτομα τροποποιούν μια πτυχή της συμπεριφοράς τους ως απάντηση στην επίγνωσή τους ότι παρατηρούνται. Η επίδραση ανακαλύφθηκε στο πλαίσιο έρευνας που διεξήχθη στο εργοστάσιο Hawthorne Western Electric.

Περιγραφή[]

In physics, the term observer effect refers to changes that the act of observation will make on a phenomenon being observed. This is often the result of instruments that, by necessity, alter the state of what they measure in some manner.

A commonplace example is checking the pressure in an automobile tire; this is difficult to do without letting out some of the air, thus changing the pressure. Furthermore, it is not possible to see any object without light hitting the object, and causing it to emit light; while this may seem negligible, the object still experiences a change.

This effect can be observed in many domains of physics and can often be reduced to insignificance by using better instruments or observation techniques.

In quantum mechanics, there is a common misconception (which has acquired a life of its own, giving rise to endless speculations) that it is the mind of a conscious observer that causes the observer effect in quantum processes. It is rooted in a basic misunderstanding of the meaning of the quantum wave function ψ and the quantum measurement process.[1][2]

According to standard quantum mechanics, however, it is a matter of complete indifference whether the experimenters stay around to watch their experiment, or leave the room and delegate observing to an inanimate apparatus, instead, which amplifies the microscopic events to macroscopic[3] measurements and records them by a time-irreversible process.[4] The measured state is not interfering with the states excluded by the measurement. As Richard Feynman put it:

"Nature does not know what you are looking at, and she behaves the way she is going to behave whether you bother to take down the data or not."[5]

Historically, the observer effect has also been confused with the uncertainty principle.[6][7]

Particle physics[]

For an electron to become detectable, a photon must first interact with it, and this interaction will inevitably change the path of that electron. It is also possible for other, less direct means of measurement to affect the electron. It is necessary to distinguish clearly between the measured value of a quantity and the value resulting from the measurement process. In particular, a measurement of momentum is non-repeatable in short intervals of time. A formula (one-dimensional for simplicity) relating involved quantities, due to Niels Bohr (1928) is given by

where

Δpx is uncertainty in measured value of momentum,
Δt is duration of measurement,
vx is velocity of particle before measurement,
v|x|' is velocity of particle after measurement,
ħ is the reduced Planck constant.

The measured momentum of the electron is then related to vx, whereas its momentum after the measurement is related to vx. This is a best-case scenario.[8]

Electronics[]

In electronics, ammeters and voltmeters are usually wired in series or parallel to the circuit, and so by their very presence affect the current or the voltage they are measuring by way of presenting an additional real or complex load to the circuit, thus changing the transfer function and behavior of the circuit itself. Even a more passive device such as a current clamp, which measures the wire current without coming into physical contact with the wire, affects the current through the circuit being measured because the inductance is mutual.

Thermodynamics[]

In thermodynamics, a standard mercury-in-glass thermometer must absorb or give up some thermal energy to record a temperature, and therefore changes the temperature of the body which it is measuring.

Quantum mechanics[]

The theoretical foundation of the concept of measurement in quantum mechanics is a contentious issue deeply connected to the many interpretations of quantum mechanics. A key focus point is that of wave function collapse, for which several popular interpretations assert that measurement causes a discontinuous change into an eigenstate of the operator associated with the quantity that was measured.

More explicitly, the superposition principle (ψ = Σanψn) of quantum physics dictates that for a wave function ψ, a measurement will result in a state of the quantum system of one of the m possible eigenvalues fn , n=1,2,....m, of the operator overset|∧|F which in the space of the eigenfunctions 'ψn , n=1,2,...,n.

Once one has measured the system, one knows its current state; and this prevents it from being in one of its other states−−it has apparently decohered from them without prospects of future strong quantum interference.[9][10][11] This means that the type of measurement one performs on the system affects the end-state of the system.

An experimentally studied situation related to this is the quantum Zeno effect, in which a quantum state would decay if left alone, but does not decay because of its continuous observation. The dynamics of a quantum system under continuous observation is described by a quantum stochastic master equation known as the Belavkin equation.[12][13][14] Further studies have shown that even observing the results after the experiment leads to collapsing the wave function and loading a back-history as shown by delayed choice quantum eraser.[15]

When discussing the wave function ψ which describes the state of a system in quantum mechanics, one should be cautious of a common misconception that assumes that the wave function ψ amounts to the same thing as the physical object it describes. This flawed concept must then require existence of an external mechanism, such as the mind of a conscious observer, that lies outside the principles governing the time evolution of the wave function ψ, in order to account for the so-called "collapse of the wave function" after a measurement has been performed. But the wave function ψ is not a physical object like, for example, an atom, which has an observable mass, charge and spin, as well as internal degrees of freedom. Instead, ψ is an abstract mathematical function that contains all the statistical information that an observer can obtain from measurements of a given system. In this case, there is no real mystery that mathematical form of the wave function ψ must change abruptly after a measurement has been performed.

In the ambit of the so-called hidden-measurements interpretation of quantum mechanics, the observer-effect can be understood as an instrument effect which results from the combination of the following two aspects: (a) an invasiveness of the measurement process, intrinsically incorporated in its experimental protocol (which therefore cannot be eliminated); (b) the presence of a random mechanism (due to fluctuations in the experimental context) through which a specific measurement-interaction is each time actualized, in a non-predictable (non-controllable) way.[16][17][18]

A consequence of Bell's theorem is that measurement on one of two entangled particles can appear to have a nonlocal effect on the other particle. Additional problems related to decoherence arise when the observer is modeled as a quantum system, as well. (see also Quantum decoherence (Delayed choice quantum eraser))

The uncertainty principle has been frequently confused with the observer effect, evidently even by its originator, Werner Heisenberg.[6] The uncertainty principle in its standard form describes how precisely we may measure the position and momentum of a particle at the same time — if we increase the precision in measuring one quantity, we are forced to lose precision in measuring the other.[19] An alternative version of the uncertainty principle,[20] more in the spirit of an observer effect,[21] fully accounts for the disturbance the observer has on a system and the error incurred, although this is not how the term "uncertainty principle" is most commonly used in practice.

Υποσημειώσεις[]

  1. "Of course the introduction of the observer must not be misunderstood to imply that some kind of subjective features are to be brought into the description of nature. The observer has, rather, only the function of registering decisions, i.e., processes in space and time, and it does not matter whether the observer is an apparatus or a human being; but the registration, i.e., the transition from the "possible" to the "actual," is absolutely necessary here and cannot be omitted from the interpretation of quantum theory." - Werner Heisenberg, Physics and Philosophy, p. 137
  2. "Was the wave function waiting to jump for thousands of millions of years until a single-celled living creature appeared? Or did it have to wait a little longer for some highly qualified measurer - with a PhD?" -John Stewart Bell, 1981, Quantum Mechanics for Cosmologists. In C.J. Isham, R. Penrose and D.W. Sciama (eds.), Quantum Gravity 2: A second Oxford Symposium. Oxford: Clarendon Press, p.611.
  3. Jaeger, Gregg (September 2014). "What in the (quantum) world is macroscopic?". American Journal of Physics 82 (9): 896–905. doi:10.1119/1.4878358. Bibcode2014AmJPh..82..896J. 
  4. Bell, John (2004). Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press. σελ. 170. ISBN 9780521523387. 
  5. Feynman, Richard (2015). The Feynman Lectures on Physics, Vol. III. Ch 3.2: Basic Books. ISBN 9780465040834. 
  6. 6,0 6,1 Furuta, Aya (2012), "One Thing Is Certain: Heisenberg's Uncertainty Principle Is Not Dead", Scientific American, http://www.scientificamerican.com/article.cfm?id=heisenbergs-uncertainty-principle-is-not-dead 
  7. Ozawa, Masanao (2003), "Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement", Physical Review A 67 (4): 042105, doi:10.1103/PhysRevA.67.042105 
  8. Landau, L.D.; Lifshitz, E. M. (1977). Quantum Mechanics: Non-Relativistic Theory. Vol. 3 (3rd έκδοση). Pergamon Press. §7, §44. ISBN 978-0-08-020940-1. https://archive.org/details/QuantumMechanics_104. 
  9. B.D'Espagnat, P.Eberhard, W.Schommers, Franco Selleri. Quantum Theory and Pictures of Reality. Springer-Verlag, 1989, ISBN 3-540-50152-5
  10. Schlosshauer, Maximilian (2005). "Decoherence, the measurement problem, and interpretations of quantum mechanics". Rev. Mod. Phys. 76 (4): 1267–1305. doi:10.1103/RevModPhys.76.1267. Bibcode2004RvMP...76.1267S. http://rmp.aps.org/abstract/RMP/v76/i4/p1267_1. Ανακτήθηκε την 28 February 2013. 
  11. Giacosa, Francesco (2014). "On unitary evolution and collapse in quantum mechanics". Quanta 3 (1): 156–170. doi:10.12743/quanta.v3i1.26. http://quanta.ws/ojs/index.php/quanta/article/view/26. 
  12. V. P. Belavkin (1989). "A new wave equation for a continuous non-demolition measurement". Physics Letters A 140 (7–8): 355–358. doi:10.1016/0375-9601(89)90066-2. Bibcode1989PhLA..140..355B. 
  13. Howard J. Carmichael (1993). An Open Systems Approach to Quantum Optics. Berlin Heidelberg New-York: Springer-Verlag. 
  14. Πρότυπο:Cite techreport
  15. Kim, Yoon-Ho; R. Yu; S.P. Kulik; Y.H. Shih; Marlan Scully (2000). "A Delayed "Choice" Quantum Eraser". Physical Review Letters 84: 1–5. doi:10.1103/PhysRevLett.84.1. Bibcode2000PhRvL..84....1K. 
  16. Sassoli de Bianchi, M. (2013). The Observer Effect. Foundations of Science 18, pp. 213-243, arXiv:1109.3536.
  17. Sassoli de Bianchi, M. (2015). God may not play dice, but human observers surely do. Foundations of Science 20, pp. 77-105, arXiv:1208.0674.
  18. Aerts, D. and Sassoli de Bianchi, M. (2014). The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics 351, pp. 975–1025, arXiv:1404.2429.
  19. Heisenberg, W. (1930), Physikalische Prinzipien der Quantentheorie, Leipzig: Hirzel English translation The Physical Principles of Quantum Theory. Chicago: University of Chicago Press, 1930. reprinted Dover 1949
  20. Ozawa, Masanao (2003), "Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement", Physical Review A 67 (4): 042105, doi:10.1103/PhysRevA.67.042105 
  21. V. P. Belavkin (1992). "Quantum continual measurements and a posteriori collapse on CCR". Communications in Mathematical Physics 146 (3): 611–635. doi:10.1007/BF02097018. Bibcode1992CMaPh.146..611B. 

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement