Πληροφοριακή Γεωμετρία
- Ένας Επιστημονικός Κλάδος της Γεωμετρίας.
Ετυμολογία[]
Η ονομασία "Πληροφοριακή" σχετίζεται ετυμολογικά με την λέξη "Πληροφορία".
Περιγραφή[]
Information geometry is a branch of mathematics that applies the techniques of differential geometry to the field of probability theory. This is done by taking probability distributions for a statistical model as the points of a Riemannian manifold, forming a statistical manifold. The Fisher information metric provides the Riemannian metric.
Information geometry reached maturity through the work of Shun'ichi Amari and other Japanese mathematicians in the 1980s. Amari and Nagaoka's book, Methods of Information Geometry,[1] is cited by most works of the relatively young field due to its broad coverage of significant developments attained using the methods of information geometry up to the year 2000. Many of these developments were previously only available in Japanese-language publications.
Introduction[]
The following introduction is based on Methods of Information Geometry.[1]
Information and probability[]
Define an n-set to be a set V with cardinality . To choose an element v (value, state, point, outcome) from an n-set V, one needs to specify b-sets (default b=2), if one disregards all but the cardinality. That is, nats of information are required to specify v; equivalently, bits are needed.
By considering the occurrences of values from , one has an alternate way to refer to , through . First, one chooses an occurrence , which requires information of bits. To specify v, one subtracts the excess information used to choose one from all those linked to , this is . Then, is the number of portions fitting into . Thus, one needs bits to choose one of them. So the information (variable size, code length, number of bits) needed to refer to , considering its occurrences in a message is
Finally, is the normalized portion of information needed to code all occurrences of one . The averaged code length over all values is . is called the entropy of a random variable .
Υποσημειώσεις[]
- ↑ 1,0 1,1 Shun'ichi Amari, Hiroshi Nagaoka - Methods of information geometry, Translations of mathematical monographs; v. 191, American Mathematical Society, 2000 (ISBN 978-0821805312)
Εσωτερική Αρθρογραφία[]
- Γεωμετρία
- Ευκλείδεια Γεωμετρία
- Υπερβολική Γεωμετρία
- Ελλειπτική Γεωμετρία
- Παραβολική Γεωμετρία
- Προβολική Γεωμετρία
Βιβλιογραφία[]
Ιστογραφία[]
Κίνδυνοι Χρήσης |
---|
Αν και θα βρείτε εξακριβωμένες πληροφορίες "Οι πληροφορίες αυτές μπορεί πρόσφατα Πρέπει να λάβετε υπ' όψη ότι Επίσης, |
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν
- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)