Science Wiki
Advertisement

Σπινώδης Πάγος

Magnetic Spin ice


Magnetic-Monopole-01-goog

Μαγνητικό Μονόπολο

Magnetic-Monopole-02-goog

Μαγνητικό Μονόπολο

Magnetic-Monopole-03-goog

Μαγνητικό Μονόπολο

- Είναι μία υποθετική Φυσική Οντότητα.

Ετυμολογία[]

Η ονομασία "Σπινώδης" σχετίζεται ετυμολογικά με την λέξη "spin".

Εισαγωγή[]

A spin ice is a substance that does not have a single minimal-energy state. It has "spin" degrees of freedom, i.e., it is a magnet, with frustrated interactions that prevent it from completely freezing. Spin ices show low-temperature properties, residual entropy in particular, closely related to those of crystalline water ice.[1] The most prominent compounds with such properties are dysprosium titanate and holmium titanate. The magnetic ordering of a spin ice resembles the positional ordering of hydrogen atoms in conventional water ice.

Recent experiments have found evidence for the existence of deconfined magnetic monopoles in these materials,[2][3] with analogous properties to the hypothetical magnetic monopoles postulated to exist in the vacuum.

Technical description[]

In 1935, Linus Pauling noted that the structure of water ice exhibited degrees of freedom that would be expected to remain disordered even at absolute zero. That is, even upon cooling to zero temperature, water ice is expected to have residual entropy, i.e., intrinsic randomness. This is a result of the fact that the structure of ice contains oxygen atoms with four neighboring hydrogen atoms. For each oxygen atom, two of the neighboring hydrogen atoms are near (forming the traditional H2O molecule), and two are further away (being the hydrogen atoms of neighboring water molecules). Pauling noted that the number of configurations conforming to this "two-in two-out" rule grows exponentially with the system size, and, therefore, that the zero-temperature entropy of ice was expected to be extensive.[4] Pauling's findings were confirmed by specific heat measurements, though pure crystals of water ice are particularly hard to create.Πρότυπο:Citation needed

Αρχείο:SpinIce.svg

The arrangement of spins (black arrows) in a spin ice

Spin ices are materials consisting of tetrahedra of ions, each of which has a non-zero spin, which must satisfy some two-in, two-out rule analogous to water ice because of the interactions between neighbouring ions. Spin ice materials therefore exhibit the same residual entropy properties as water ice. However, depending on the material used in a spin ice, it is generally much easier to create large single crystals of spin ice materials than the corresponding water ice materials. Additionally, the interaction of a magnetic field with the spins in a spin ice material make spin ice materials much better materials for examining residual entropy than water ice.

While Philip Anderson had already noted in 1956[5] the connection between the problem of the frustrated Ising antiferromagnet on a (pyrochlore) lattice of corner-shared tetrahedra and Pauling's water ice problem, real spin ice materials were only discovered quite recently.[6] The first materials identified as spin ices were the pyrochlores Dy2Ti2O7 (dysprosium titanate), Ho2Ti2O7 (holmium titanate) and Ho2Sn2O7 (holmium stannate). Very recently,Πρότυπο:When compelling evidence has been reported that Dy2Sn2O7 (dysprosium stannate) is also a spin ice.Πρότυπο:Citation needed

Spin ice materials are characterized by disorder of magnetic ions, even when said ions are at very low temperatures. Alternating current magnetic susceptibility measurements find evidence for a dynamic freezing of the magnetic moments as the temperature is lowered somewhat below the temperature at which the specific heat displays a maximum.

Spin ices and magnetic monopoles[]

Spin ices are geometrically frustrated magnetic systems. While frustration is usually associated with triangular or tetrahedral arrangements of magnetic moments coupled via antiferromagnetic exchange interactions, spin ices are frustrated ferromagnets. It is the local nature of the strong crystal field forcing the magnetic moments to point either in or out of a tetrahedron that renders ferromagnetic interactions frustrated in spin ices. Interestingly, it is the long range magnetic dipolar interaction and not the nearest-neighbor exchange coupling that causes the frustration and the consequential "two-in two-out" spin orientations and which leads to the spin ice phenomenology.[7][8]

In September 2009, researchers described the observation of quasiparticles resembling monopoles.[2] A single crystal of dysprosium titanate in a highly frustrated pyrochlore lattice ([[Cubic_crystal_system#Crystal_classes|FdΠρότυπο:Overlinem]]) was examined between 2 K and 0.6 K. Using neutron scattering, the magnetic moments were shown to align in the spin ice into interwoven tube-like bundles resembling Dirac strings. At the defect formed by the end of each tube, the magnetic field looks like that of a monopole. Using an applied magnetic field to break the symmetry of the system, the researchers were able to control the density and orientation of these strings. A contribution to the heat capacity of the system from an effective gas of these quasiparticles is also described.[9][10]

The effective charge of a magnetic monopole in a spin ice has been measured as Πρότυπο:Val (Bohr magnetons per angstrom).[11] The elementary constituents of spin ice are magnetic dipoles, so the emergence of monopoles is an example of the phenomenon of fractionalization.

Υποσημειώσεις[]

  1. Bramwell, S. T.; Gingras, M. J. P. (2001), "Spin Ice State in Frustrated Magnetic Pyrochlore Materials", Science 294 (5546): 1495–1501, doi:10.1126/science.1064761, http://www.sciencemag.org/cgi/content/abstract/sci;294/5546/1495 
  2. 2,0 2,1 'Magnetricity' Observed And Measured For First Time. Science Daily. 2009-10-15. http://www.sciencedaily.com/releases/2009/10/091015085916.htm. Ανακτήθηκε την 2010-06-10. 
  3. Gingras, M.J.P. (2009), "Observing Monopoles in a Magnetic Analog of Ice", Science 326 (5951): 375–376, doi:10.1126/science.1181510, http://www.sciencemag.org/cgi/content/summary/326/5951/375 
  4. L. Pauling, The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement, Journal of the American Chemical Society, Vol. 57, p. 2680 (1935).
  5. P.W. Anderson, Phys. Rev., Vol. 102, p. 1008 (1956).
  6. M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske and K. W. Godfrey, Phys. Rev. Lett., Vol. 79, p. 2554 (1997).
  7. B. C. den Hertog and M. J. P. Gingras, Phys. Rev. Lett., Vol. 84, p. 3430 (2000).
  8. S. V. Isakov, R. Moessner and S. L. Sondhi, Phys. Rev. Lett., Vol. 95, p. 217201 (2005).
  9. Magnetic Monopoles Detected In A Real Magnet For The First Time. Science Daily. 2009-09-04. http://www.sciencedaily.com/releases/2009/09/090903163725.htm. Ανακτήθηκε την 2009-09-04. 
  10. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R.S. Perry (2009-09-03). "Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7". Science 326 (5951): 411–4. doi:10.1126/science.1178868. PMID 19729617. Bibcode2009Sci...326..411M. 
  11. Measurement of the charge and current of magnetic monopoles in spin ice. Nature. http://www.nature.com/nature/journal/v461/n7266/full/nature08500.html. 

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement