Science Wiki
Advertisement

Συμπαγής Χώρος

Compact Space


Compactness-01-goog

The interval A = (-∞, -2] is not compact
because it is not bounded.
The interval C = (2, 4) is not compact
because it is not closed.
The interval B = [0, 1] is compact
because it is both closed and bounded

Mathematical-Spaces-01-goog

Μαθηματικά Γεωμετρία Γραμμική Άλγεβρα
Γεωμετρικός Χώρος Ευκλείδειος Χώρος Χώρος Minkowski Χώρος Riemann Χώρος Lobachevsky
Μαθηματικός Χώρος Τοπολογικός Χώρος Διανυσματικός Χώρος Μετρικός Χώρος Χώρος Hilbert

Geometry-Models-01-goog

Ελλειπτικός Χώρος Ευκλείδειος Χώρος Υπερβολικός Χώρος

Space-Time-Shape-01-goog

Ελλειπτικός Χώρος Ευκλείδειος Χώρος Υπερβολικός Χώρος

- Ένας Μαθηματικός Χώρος.

Ετυμολογία[]

Η ονομασία "συμπαγής" σχετίζεται ετυμολογικά με την λέξη "συμπάγεια".

Ορισμός[]

A topological space is compact if every open cover of X has a finite subcover.

In other words, if X is the union of a family of open sets, there is a finite subfamily whose union is X.

A subset A of a topological space X is compact if it is compact as a topological space with the relative topology (i.e., every family of open sets of X whose union contains A has a finite subfamily whose union contains A).

Εισαγωγή[]

In mathematics, and more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being

  • closed (that is, containing all its limit points) and
  • bounded (that is, having all its points lie within some fixed distance of each other).

Examples include a closed interval, a rectangle, or a finite set of points.

This notion is defined for more general topological spaces than Euclidean space in various ways.

Υποσημειώσεις[]

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement