Science Wiki




Συναλλοιότητα Αναλλοιότητα

Υποβάθρεια Ανεξαρτησία Συναλλοιότητα

Συναλλοιότητα Ανταλλοιότητα Εφαπτομενικότητα Καθετότητα

Διανυσματική Βάση Μοναδιαίο Διάνυσμα

Συναλλοιότητα Ανταλλοιότητα Εφαπτομενικότητα Καθετότητα

- Μία ιδιότητα


Η ονομασία "Συναλλοιότητα" σχετίζεται ετυμολογικά με την λέξη "αλλοίωση".


In theoretical physics, general covariance (also known as diffeomorphism covariance or general invariance) is the invariance of the form of physical laws under arbitrary differentiable coordinate transformations. The essential idea is that coordinates do not exist a priori in nature, but are only artifices used in describing nature, and hence should play no role in the formulation of fundamental physical laws.

A physical law expressed in a generally covariant fashion takes the same mathematical form in all coordinate systems,[1] and is usually expressed in terms of tensor fields. The classical (non-quantum) theory of electrodynamics is one theory that has such a formulation.

Albert Einstein proposed this principle for his special theory of relativity; however, that theory was limited to space-time coordinate systems related to each other by uniform relative motions only, the so-called "inertial frames." Einstein recognized that the General principle of relativity should also apply to accelerated relative motions, and he used the newly developed tool of tensor calculus to extend the special theory's global Lorentz covariance (applying only to inertial frames) to the more general local Lorentz covariance (which applies to all frames), eventually producing his general theory of relativity. The local reduction of the general metric tensor to the Minkowski metric corresponds to free-falling (geodesic) motion, in this theory, thus encompassing the phenomenon of gravitation.

Much of the work on classical unified field theories consisted of attempts to further extend the general theory of relativity to interpret additional physical phenomena, particularly electromagnetism, within the framework of general covariance, and more specifically as purely geometric objects in the space-time continuum.


The relationship between general covariance and general relativity may be summarized by quoting a standard textbook:[2]

A more modern interpretation of the physical content of the original principle of general covariance is that the Lie group GL4(R) is a fundamental "external" symmetry of the world. Other symmetries, including "internal" symmetries based on compact groups, now play a major role in fundamental physical theories.

  • When a physical quantity or equation remains unchanged under a certain co-ordinate transformation, they are called invariant under that transformation.
  • When an equation keeps its mathematical form same under a certain co-ordinate transformation, that is called co-variant under that transformation.
  • Example:
    • Various classical vectors are invariant and Newtonian force law is co-variant under Galilean transformation.
    • Special Relativistic scalars are invariant and Lorentz force law is co-variant under Lorentz transformation.


  1. More precisely, only coordinate systems related through sufficiently differentiable transformations are considered.
  2. Gravitation, Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, 1973 Freeman, isbn=0-7167-0344-0, page=431

Εσωτερική Αρθρογραφία[]



Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.

Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν


>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)