Το Καρτεσιανό Σύστημα Συντεταγμένων (Cartesian Coordinate System) (or "Rectangular Coordinate System"), καθορίζει την θέση ενός σημείου, του τρισδιάστατου επίπεδου (flat) Χώρου, με την βοήθεια τριών αποστάσεων από τους άξονες.
Καμπυλόγραμμο Σύστημα Συντεταγμένων[]
Το Καμπυλόγραμμο Σύστημα Συντεταγμένων (Curvilinear Coordinate System) καθορίζει την θέση ενός σημείο, του τρισδιάστατου καμπύλου (curved) Χώρου, με την βοήθεια τριών γωνιών.
Το Πολικό Σύστημα Συντεταγμένων (Polar Coordinate System) καθορίζει την θέση ενός σημείου, του δισδιάστατου επίπεδου (flat) Χώρου (δηλ. σε ένα επίπεδο), με την βοήθεια μίας γωνίας και μίας απόστασης από την αρχή Ο.
Ο Μετασχηματισμός από τις Πολικές Συντεταγμένες στις Καρτεσιανές Συντεταγμένες είναι:
όπου:
r είναι η ακτινική απόσταση από την αρχή (pole) (Ο), and
θ είναι η δεξιόστροφη (anticlockwise) (counterclockwise) γωνία from the 0° ray (ή αλλιώς πολικός άξονας), which is the section of the Cartesian x-axis from the origin eastward.
Το Κυλινδρικό Σύστημα Συντεταγμένων (Cylindrical Coordinate System) καθορίζει την θέση ενός σημείο του τρισδιάστατου επίπεδου (flat) Χώρου (δηλ. σε ένα επίπεδο) με την βοήθεια μίας γωνίας, μιάς απόστασης από την αρχή Ο, και μίας απόστασης από άξονα.
Ο Μετασχηματισμός από τις Κυλινδρικές Συντεταγμένες στις Καρτεσιανές Συντεταγμένες είναι:
Το Σφαιρικό Σύστημα Συντεταγμένων (Spherical Coordinate System) καθορίζει την θέση ενός σημείο του τρισδιάστατου επίπεδου (flat) Χώρου (δηλ. σε ένα επίπεδο) με την βοήθεια δύο γωνιών και μιάς απόστασης από την αρχή Ο.
Ο Μετασχηματισμός από τις Σφαιρικές Συντεταγμένες στις Καρτεσιανές Συντεταγμένες είναι:
Ο αντίστροφος μετασχηματισμός είναι:
Αναπαραστάσεις Διανυσμάτων[]
Ένα βαθμωτό μέγεθος δεν επηρρεάζεται από τα χρησιμοποιούμενα συστήματα συντεταγμένων, δηλ. παραμένει αναλλοίωτο.
Ένα διάνυσμα όμως έχει διαφορετικές αναπαραστάσεις:
Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.
"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."
Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.
Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστηςπρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας αν διαφωνείτε με όσα αναγράφονται σε αυτήν