Science Wiki
Advertisement

Ταυτότης Euler

Euler's identity, Euler identity, Εξίσωση Euler


Euler-formula-circle-01-goog

Τύπος Euler

Euler-Identity-01-goog

Ταυτότητα Euler

Complex-plane-05-goog

Μιγαδικός Αριθμός Μιγαδικό ΕπίπεδοΤαυτότητα Euler

Euler-Identity-100-goog

Ταυτότητα Euler
Τι πιθανότητα θα είχες
να συνδυάσεις
δύο αριθμούς με άπειρα δεκαδικά ψηφία
σε μία τόσο απλή ισότητα?
Καμία !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Άπειρους αιώνες να παιδευόσουν
δεν το πετύχαινες !!!

Και, όμως,
υπάρχει αυτή η απλή εξίσωση,
όπου οι δύο αυτοί
"αριθμητικοί" γίγαντες,
"ημερεύουν"
και σέρνουν, μαζί, το ίδιο "κάρο" !!!!!

Theorems-01-goog

Μαθηματικά
Μαθηματικό Θεώρημα Μαθηματικά Θεωρήματα Μαθηματική Εικασία Μαθηματικές Εικασίες Εξίσωση Εξισώσεις Μαθηματικό Αξίωμα Μαθηματικά Αξιώματα
Νόμοι Φυσικής
Αριθμός Αριθμοί Μαθηματικός Χώρος Μαθηματικοί Χώροι

Equations-Maths-goog

Μαθηματικά Άλγεβρα Μαθηματική Ανάλυση
Μαθηματική Εξίσωση Εξισώσεις Μαθηματικές ΕξισώσειςΑλγεβρική Εξίσωση Αλγεβρικές Εξισώσεις Διαφορική Εξίσωση Διαφορικές Εξισώσεις
Φυσική Φυσικός Νόμος

- Μία Μαθηματική Ταυτότητα.

Ετυμολογία[]

Η ονομασία "ταυτότητα Euler" σχετίζεται ετυμολογικά με την όνομα του μαθηματικού "Euler".

Εισαγωγή[]

Η ταυτότητα του Euler στη Mαθηματική Aνάλυση, είναι η εξίσωση

ή αλλιώς

όπου

είναι ο αριθμός του Euler, η βάση των φυσικών λογαρίθμων,
είναι ο Φανταστικός Αριθμός, ένας από τους δύο μιγαδικούς αριθμούς του οποίου το τετράγωνο ισούται με μείον ένα (ο άλλος είναι το ), και
ο λόγος του μήκους της περιφέρειας ενός κύκλου προς τη διάμετρό του.

Έλαβε το όνομά της από τον Λέοναρντ Euler και μερικές φορές είναι γνωστή και ως εξίσωση του Euler.

Απόδειξη[]

Η ταυτότητα είναι μια ειδική περίπτωση της φόρμουλας του Όιλερ, που διατυπώνεται ως εξής:

για κάθε πραγματικό αριθμό χ. (οι μονάδες δίνονται σε ακτίνια.)

Συγκεκριμένα, αν

τότε

Αφού

και

αποδεικνύεται ότι

που δίνει την ταυτότητα

Ονοματοδότηση[]

Αν και ο Euler έγραψε για τη φόρμουλά του συνδέοντας το e με τους όρους ημίτονο και συνημίτονο, δεν υπάρχει πουθενά αναφορά ότι ο ίδιος απέδειξε την απλοποιημένη μορφή της ταυτότητας.

Ακόμα η ίδια η φόρμουλα είναι πιθανό να ήταν γνωστή πριν από τον Euler. Είναι λοιπόν αδύνατο να απαντηθεί το ερώτημα αν η ταυτότητα μπορεί να αποδωθεί στον Euler.

Υποσημειώσεις[]

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Κίνδυνοι Χρήσης

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement