Science Wiki



Σύστημα Συντεταγμένων.

Πολικό Σύστημα Συντεταγμέων.

Καρτεσιανό Σύστημα Συντεταγμένων.

- Ένας τελεστής


Η ονομασία "Θέση" σχετίζεται ετυμολογικά με την λέξη "[[ ]]".


In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. The eigenvalue of the operator is the position vector of the particle.


In one dimension, the square modulus of the wave function, , represents the probability density of finding the particle at position . Hence the expected value of a measurement of the position of the particle is

Accordingly, the quantum mechanical operator corresponding to position is , where

The circumflex over the x on the left side indicates an operator, so that this equation may be read The result of the operator x acting on any function ψ(x) equals x multiplied by ψ(x). Or more simply, the operator x multiplies any function ψ(x) by x.


The eigenfunctions of the position operator, represented in position space, are Dirac delta function. To show this, suppose that is an eigenstate of the position operator with eigenvalue . We write the eigenvalue equation in position coordinates,

recalling that simply multiplies the function by in the position representation. Since is a variable while is a constant, must be zero everywhere except at . The normalized solution to this is

Although such a state is physically unrealizable and, strictly speaking, not a function, it can be thought of as an "ideal state" whose position is known exactly (any measurement of the position always returns the eigenvalue ). Hence, by the uncertainty principle, nothing is known about the momentum of such a state.

Three dimensions[]

The generalisation to three dimensions is straightforward. The wavefunction is now and the expectation value of the position is

where the integral is taken over all space. The position operator is

Momentum space[]

In momentum space, the position operator in one dimension is


Consider, for example, the case of a spinless particle moving in one spatial dimension (i.e. in a line). The state space for such a particle is L2(R), the Hilbert space of complex-valued and square-integrable (with respect to the Lebesgue measure) functions on the real line. The position operator, Q, is then defined by:

with domain

Since all continuous functions with compact support lie in D(Q), Q is densely defined. Q, being simply multiplication by x, is a self adjoint operator, thus satisfying the requirement of a quantum mechanical observable. Immediately from the definition we can deduce that the spectrum consists of the entire real line and that Q has purely continuous spectrum, therefore no discrete eigenvalues. The three-dimensional case is defined analogously. We shall keep the one-dimensional assumption in the following discussion.


As with any quantum mechanical observable, in order to discuss measurement, we need to calculate the spectral resolution of Q:

Since Q is just multiplication by x, its spectral resolution is simple. For a Borel subset B of the real line, let denote the indicator function of B. We see that the projection-valued measure ΩQ is given by

i.e. ΩQ is multiplication by the indicator function of B. Therefore, if the system is prepared in state ψ, then the probability of the measured position of the particle being in a Borel set B is

where μ is the Lebesgue measure. After the measurement, the wave function collapses to either


, where is the Hilbert space norm on L2(R).


Εσωτερική Αρθρογραφία[]



Ikl.jpg Κίνδυνοι ΧρήσηςIkl.jpg

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.

Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν


>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)