Τριγωνομετρία είναι ο κλάδος των Μαθηματικών που ασχολείται με την επίλυση τριγώνου, δηλαδή με τον προσδιορισμό άγνωστων στοιχείων του τριγώνου, αν κάποια άλλα στοιχεία του είναι ήδη γνωστά.
Στο ορθογώνιο τρίγωνο του σχήματος 1, ορίζουμε τους εξής τριγωνομετρικούς αριθμούς:
Γενικότερα, μια οποιαδήποτε γωνία ω μπορούμε να την θέσουμε σε Καρτεσιανό Σύστημα Συντεταγμένων, όπως φαίνεται στο Σχήμα 2, και από το ορθογώνιο τρίγωνο που σχηματίζεται, να έχουμε τους τρεις τριγωνομετρικούς αριθμούς.
Συγκεκριμένα:
Ιδιότητες[]
Για τους τριγωνομετρικούς αριθμούς ισχύουν τα παρακάτω:
και
και
, και
Σε κάθε τρίγωνο ΑΒΓ ισχύει ο νόμος των ημιτόνων:
όπου α, β και γ είναι οι πλευρές απέναντι από τις γωνίες Α, Β και Γ αντίστοιχα.
Σε κάθε τρίγωνο ΑΒΓ ισχύουν οι νόμοι των συνημιτόνων:
Επειδή ισχύει , Ο νόμος του συνημιτόνου για την ορθή γωνία ορθογώνιου τριγώνου, όπως στο Σχήμα 1, δίνει το πυθαγόρειο θεώρημα:
Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.
"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."
Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.
Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστηςπρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας αν διαφωνείτε με όσα αναγράφονται σε αυτήν