11D Μήτρα Απειροστής Στροφής
Infinitesimal Rotation
- Μία μήτρα ενός μετασχηματισμού .
Η ονομασία "Απειροστός" σχετίζεται ετυμολογικά με την λέξη "άπειρο " .
Η Ενιαία Μήτρα Απειροστής Στροφής
αναπαριστά τον μετασχηματισμό της απειροστής στροφής στον Ενιαίο 11-διάσταστο Χωρόχρονο.
R
=
[
0
−
χ
x
+
χ
y
−
χ
z
+
ψ
0
ψ
~
−
1
χ
~
z
+
1
χ
~
y
−
1
χ
~
x
+
1
1
+
χ
x
0
−
θ
z
+
θ
y
−
ϕ
x
0
ϕ
~
x
+
1
θ
~
y
−
1
θ
~
z
+
1
1
χ
~
x
−
1
−
χ
y
+
θ
z
0
−
θ
x
+
ϕ
y
0
ϕ
~
y
−
1
θ
~
x
+
1
1
θ
~
z
−
1
χ
~
y
+
1
+
χ
x
−
θ
y
+
θ
x
0
−
ϕ
z
0
ϕ
~
z
+
1
1
θ
~
x
−
1
θ
~
y
+
1
χ
~
z
−
1
−
ψ
+
ϕ
x
−
ϕ
y
+
ϕ
z
0
0
1
ϕ
~
z
−
1
ϕ
~
y
+
1
ϕ
~
x
−
1
ψ
~
+
1
0
0
0
0
0
−
5
1
1
1
1
1
+
ψ
−
ϕ
x
+
ϕ
y
−
ϕ
z
0
1
1
ϕ
~
z
+
1
ϕ
~
y
−
1
ϕ
~
x
+
1
ψ
~
−
1
−
χ
z
+
θ
y
−
θ
x
0
+
ϕ
z
1
ϕ
~
z
−
1
1
θ
~
x
+
1
θ
~
y
−
1
χ
~
z
+
1
+
χ
y
−
θ
z
0
+
θ
x
−
ϕ
y
1
ϕ
~
y
+
1
θ
~
x
−
1
1
θ
~
z
+
1
χ
~
y
−
1
−
χ
x
0
+
θ
z
−
θ
y
+
ϕ
x
1
ϕ
~
x
−
1
θ
~
y
−
1
θ
~
z
−
1
1
χ
~
x
+
1
0
+
χ
x
−
χ
y
+
χ
z
−
ψ
1
ψ
~
+
1
χ
~
z
−
1
χ
~
y
+
1
χ
~
x
−
1
1
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-\chi _{x}}&\color {Orange}{+\chi _{y}}&\color {Orange}{-\chi _{z}}&\color {Orange}{+\psi }&0&\color {Cyan}{{\tilde {\psi }}^{-1}}&\color {Cyan}{{\tilde {\chi }}_{z}^{+1}}&\color {Cyan}{{\tilde {\chi }}_{y}^{-1}}&\color {Cyan}{{\tilde {\chi }}_{x}^{+1}}&1\\\color {Orange}{+\chi _{x}}&0&\color {Red}{-\theta _{z}}&\color {Red}{+\theta _{y}}&\color {Orange}{-\phi _{x}}&0&\color {Cyan}{{\tilde {\phi }}_{x}^{+1}}&\color {Blue}{{\tilde {\theta }}_{y}^{-1}}&\color {Blue}{{\tilde {\theta }}_{z}^{+1}}&1&\color {Cyan}{{\tilde {\chi }}_{x}^{-1}}\\\color {Orange}{-\chi _{y}}&\color {Red}{+\theta _{z}}&0&\color {Red}{-\theta _{x}}&\color {Orange}{+\phi _{y}}&0&\color {Cyan}{{\tilde {\phi }}_{y}^{-1}}&\color {Blue}{{\tilde {\theta }}_{x}^{+1}}&1&\color {Blue}{{\tilde {\theta }}_{z}^{-1}}&\color {Cyan}{{\tilde {\chi }}_{y}^{+1}}\\\color {Orange}{+\chi _{x}}&\color {Red}{-\theta _{y}}&\color {Red}{+\theta _{x}}&0&\color {Orange}{-\phi _{z}}&0&\color {Cyan}{{\tilde {\phi }}_{z}^{+1}}&1&\color {Blue}{{\tilde {\theta }}_{x}^{-1}}&\color {Blue}{{\tilde {\theta }}_{y}^{+1}}&\color {Cyan}{{\tilde {\chi }}_{z}^{-1}}\\\color {Orange}{-\psi }&\color {Orange}{+\phi _{x}}&\color {Orange}{-\phi _{y}}&\color {Orange}{+\phi _{z}}&0&0&1&\color {Cyan}{{\tilde {\phi }}_{z}^{-1}}&\color {Cyan}{{\tilde {\phi }}_{y}^{+1}}&\color {Cyan}{{\tilde {\phi }}_{x}^{-1}}&\color {Cyan}{{\tilde {\psi }}^{+1}}\\0&0&0&0&0&-5&1&1&1&1&1\\\color {Cyan}{+\psi }&\color {Cyan}{-\phi _{x}}&\color {Cyan}{+\phi _{y}}&\color {Cyan}{-\phi _{z}}&0&1&1&\color {Orange}{{\tilde {\phi }}_{z}^{+1}}&\color {Orange}{{\tilde {\phi }}_{y}^{-1}}&\color {Orange}{{\tilde {\phi }}_{x}^{+1}}&\color {Orange}{{\tilde {\psi }}^{-1}}\\\color {Cyan}{-\chi _{z}}&\color {Blue}{+\theta _{y}}&\color {Blue}{-\theta _{x}}&0&\color {Cyan}{+\phi _{z}}&1&\color {Orange}{{\tilde {\phi }}_{z}^{-1}}&1&\color {Red}{{\tilde {\theta }}_{x}^{+1}}&\color {Red}{{\tilde {\theta }}_{y}^{-1}}&\color {Orange}{{\tilde {\chi }}_{z}^{+1}}\\\color {Cyan}{+\chi _{y}}&\color {Blue}{-\theta _{z}}&0&\color {Blue}{+\theta _{x}}&\color {Cyan}{-\phi _{y}}&1&\color {Orange}{{\tilde {\phi }}_{y}^{+1}}&\color {Red}{{\tilde {\theta }}_{x}^{-1}}&1&\color {Red}{{\tilde {\theta }}_{z}^{+1}}&\color {Orange}{{\tilde {\chi }}_{y}^{-1}}\\\color {Cyan}{-\chi _{x}}&0&\color {Blue}{+\theta _{z}}&\color {Blue}{-\theta _{y}}&\color {Cyan}{+\phi _{x}}&1&\color {Orange}{{\tilde {\phi }}_{x}^{-1}}&\color {Red}{{\tilde {\theta }}_{y}^{-1}}&\color {Red}{{\tilde {\theta }}_{z}^{-1}}&1&\color {Orange}{{\tilde {\chi }}_{x}^{+1}}\\0&\color {Cyan}{+\chi _{x}}&\color {Cyan}{-\chi _{y}}&\color {Cyan}{+\chi _{z}}&\color {Cyan}{-\psi }&1&\color {Orange}{{\tilde {\psi }}^{+1}}&\color {Orange}{{\tilde {\chi }}_{z}^{-1}}&\color {Orange}{{\tilde {\chi }}_{y}^{+1}}&\color {Orange}{{\tilde {\chi }}_{x}^{-1}}&1\end{bmatrix}}}
Συνοπτική 11D Μήτρα [ ]
Συνοπτικά, η μήτρα αυτή μπορεί να γραφεί:
R
=
[
0
−
X
+
Ψ
0
Ψ
~
−
1
X
~
+
1
1
+
X
Θ
−
Φ
0
Φ
~
+
1
Θ
~
X
~
−
1
−
Ψ
+
Φ
0
0
1
Φ
~
−
1
Ψ
~
+
1
0
0
0
−
5
1
3
1
+
Ψ
−
Φ
0
1
1
Φ
~
+
1
Ψ
~
−
1
−
X
Θ
+
Φ
3
Φ
~
−
1
Θ
~
X
~
+
1
0
+
X
−
Ψ
1
Ψ
~
+
1
X
~
−
1
1
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-{\mathit {\mathrm {X} }}}&\color {Orange}{+{\mathit {\Psi }}}&0&\color {Cyan}{\mathit {\tilde {\Psi }}}^{-1}&\color {Cyan}{\mathit {\tilde {\mathrm {X} }}}^{+1}&1\\\color {Orange}{+{\mathit {\mathrm {X} }}}&\color {Red}{\mathit {\Theta }}&\color {Orange}{-{\mathit {\Phi }}}&0&\color {Cyan}{\mathit {\tilde {\Phi }}}^{+1}&\color {Blue}{\mathit {\tilde {\Theta }}}&\color {Cyan}{\mathit {\tilde {\mathrm {X} }}}^{-1}\\\color {Orange}{-{\mathit {\Psi }}}&\color {Orange}{+{\mathit {\Phi }}}&0&0&1&\color {Cyan}{\mathit {\tilde {\Phi }}}^{-1}&\color {Cyan}{\mathit {\tilde {\Psi }}}^{+1}\\0&0&0&-5&1&3&1\\\color {Cyan}{+{\mathit {\Psi }}}&\color {Cyan}{-{\mathit {\Phi }}}&0&1&1&\color {Orange}{\mathit {\tilde {\Phi }}}^{+1}&\color {Orange}{\mathit {\tilde {\Psi }}}^{-1}\\\color {Cyan}{-{\mathit {\mathrm {X} }}}&\color {Blue}{\mathit {\Theta }}&\color {Cyan}{+{\mathit {\Phi }}}&3&\color {Orange}{\mathit {\tilde {\Phi }}}^{-1}&\color {Red}{\mathit {\tilde {\Theta }}}&\color {Orange}{\mathit {\tilde {\mathrm {X} }}}^{+1}\\0&\color {Cyan}{+{\mathit {\mathrm {X} }}}&\color {Cyan}{-{\mathit {\Psi }}}&1&\color {Orange}{\mathit {\tilde {\Psi }}}^{+1}&\color {Orange}{\mathit {\tilde {\mathrm {X} }}}^{-1}&1\end{bmatrix}}}
Χωρικό Μέρος [ ]
R
=
[
0
⋅
⋅
⋅
⋅
0
⋅
⋅
⋅
⋅
1
⋅
0
−
θ
z
+
θ
y
⋅
0
⋅
θ
~
y
−
1
θ
~
z
+
1
1
⋅
⋅
+
θ
z
0
−
θ
x
⋅
0
⋅
θ
~
x
+
1
1
θ
~
z
−
1
⋅
⋅
−
θ
y
+
θ
x
0
⋅
0
⋅
1
θ
~
x
−
1
θ
~
y
+
1
⋅
⋅
⋅
⋅
⋅
0
0
1
⋅
⋅
⋅
⋅
0
0
0
0
0
−
5
1
1
1
1
1
⋅
⋅
⋅
⋅
0
1
1
⋅
⋅
⋅
⋅
⋅
+
θ
y
−
θ
x
0
⋅
1
⋅
1
θ
~
x
+
1
θ
~
y
−
1
⋅
⋅
−
θ
z
0
+
θ
x
⋅
1
⋅
θ
~
x
−
1
1
θ
~
z
+
1
⋅
⋅
0
+
θ
z
−
θ
y
⋅
1
⋅
θ
~
y
+
1
θ
~
z
−
1
1
⋅
0
⋅
⋅
⋅
⋅
1
⋅
⋅
⋅
⋅
1
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\cdot &\cdot &\cdot &\cdot &0&\cdot &\cdot &\cdot &\cdot &1\\\cdot &0&\color {Red}{-\theta _{z}}&\color {Red}{+\theta _{y}}&\cdot &0&\cdot &\color {Blue}{{\tilde {\theta }}_{y}^{-1}}&\color {Blue}{{\tilde {\theta }}_{z}^{+1}}&1&\cdot \\\cdot &\color {Red}{+\theta _{z}}&0&\color {Red}{-\theta _{x}}&\cdot &0&\cdot &\color {Blue}{{\tilde {\theta }}_{x}^{+1}}&1&\color {Blue}{{\tilde {\theta }}_{z}^{-1}}&\cdot \\\cdot &\color {Red}{-\theta _{y}}&\color {Red}{+\theta _{x}}&0&\cdot &0&\cdot &1&\color {Blue}{{\tilde {\theta }}_{x}^{-1}}&\color {Blue}{{\tilde {\theta }}_{y}^{+1}}&\cdot \\\cdot &\cdot &\cdot &\cdot &0&0&1&\cdot &\cdot &\cdot &\cdot \\0&0&0&0&0&-5&1&1&1&1&1\\\cdot &\cdot &\cdot &\cdot &0&1&1&\cdot &\cdot &\cdot &\cdot \\\cdot &\color {Blue}{+\theta _{y}}&\color {Blue}{-\theta _{x}}&0&\cdot &1&\cdot &1&\color {Red}{{\tilde {\theta }}_{x}^{+1}}&\color {Red}{{\tilde {\theta }}_{y}^{-1}}&\cdot \\\cdot &\color {Blue}{-\theta _{z}}&0&\color {Blue}{+\theta _{x}}&\cdot &1&\cdot &\color {Red}{{\tilde {\theta }}_{x}^{-1}}&1&\color {Red}{{\tilde {\theta }}_{z}^{+1}}&\cdot \\\cdot &0&\color {Blue}{+\theta _{z}}&\color {Blue}{-\theta _{y}}&\cdot &1&\cdot &\color {Red}{{\tilde {\theta }}_{y}^{+1}}&\color {Red}{{\tilde {\theta }}_{z}^{-1}}&1&\cdot \\0&\cdot &\cdot &\cdot &\cdot &1&\cdot &\cdot &\cdot &\cdot &1\end{bmatrix}}}
Συνοπτική 11D Μήτρα [ ]
Συνοπτικά, η μήτρα αυτή μπορεί να γραφεί:
R
=
[
0
⋅
⋅
0
⋅
⋅
1
⋅
Θ
⋅
0
⋅
Θ
~
⋅
⋅
⋅
0
0
1
⋅
⋅
0
0
0
−
5
1
3
1
⋅
⋅
0
1
1
⋅
⋅
⋅
Θ
⋅
3
⋅
Θ
~
⋅
0
⋅
⋅
1
⋅
⋅
1
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\cdot &\cdot &0&\cdot &\cdot &1\\\cdot &\color {Red}{\mathit {\Theta }}&\cdot &0&\cdot &\color {Blue}{\mathit {\tilde {\Theta }}}&\cdot \\\cdot &\cdot &0&0&1&\cdot &\cdot \\0&0&0&-5&1&3&1\\\cdot &\cdot &0&1&1&\cdot &\cdot \\\cdot &\color {Blue}{\mathit {\Theta }}&\cdot &3&\cdot &\color {Red}{\mathit {\tilde {\Theta }}}&\cdot \\0&\cdot &\cdot &1&\cdot &\cdot &1\end{bmatrix}}}
Μη Χωρικό Μέρος [ ]
R
=
[
0
−
χ
x
−
χ
y
−
χ
z
+
ψ
0
ψ
~
−
1
χ
~
z
+
1
χ
~
y
+
1
χ
~
x
+
1
1
+
χ
x
0
⋅
⋅
−
ϕ
x
0
ϕ
~
x
+
1
⋅
⋅
1
χ
~
x
−
1
+
χ
y
⋅
0
⋅
−
ϕ
y
0
ϕ
~
y
+
1
⋅
1
⋅
χ
~
y
−
1
+
χ
x
⋅
⋅
0
−
ϕ
z
0
ϕ
~
z
+
1
1
⋅
⋅
χ
~
z
−
1
−
ψ
+
ϕ
x
+
ϕ
y
+
ϕ
z
0
0
1
ϕ
~
z
−
1
ϕ
~
y
−
1
ϕ
~
x
−
1
ψ
~
+
1
0
0
0
0
0
−
5
1
1
1
1
1
+
ψ
−
ϕ
x
−
ϕ
y
−
ϕ
z
0
1
1
ϕ
~
z
+
1
ϕ
~
y
+
1
ϕ
~
x
+
1
ψ
~
−
1
−
χ
z
⋅
⋅
0
+
ϕ
z
1
ϕ
~
z
−
1
1
⋅
⋅
χ
~
z
+
1
−
χ
y
⋅
0
⋅
+
ϕ
y
1
ϕ
~
y
−
1
⋅
1
⋅
χ
~
y
+
1
−
χ
x
0
⋅
⋅
+
ϕ
x
1
ϕ
~
x
−
1
⋅
⋅
1
χ
~
x
+
1
0
+
χ
x
+
χ
y
+
χ
z
−
ψ
1
ψ
~
+
1
χ
~
z
−
1
χ
~
y
−
1
χ
~
x
−
1
1
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-\chi _{x}}&\color {Orange}{-\chi _{y}}&\color {Orange}{-\chi _{z}}&\color {Orange}{+\psi }&0&\color {Cyan}{{\tilde {\psi }}^{-1}}&\color {Cyan}{{\tilde {\chi }}_{z}^{+1}}&\color {Cyan}{{\tilde {\chi }}_{y}^{+1}}&\color {Cyan}{{\tilde {\chi }}_{x}^{+1}}&1\\\color {Orange}{+\chi _{x}}&0&\cdot &\cdot &\color {Orange}{-\phi _{x}}&0&\color {Cyan}{{\tilde {\phi }}_{x}^{+1}}&\cdot &\cdot &1&\color {Cyan}{{\tilde {\chi }}_{x}^{-1}}\\\color {Orange}{+\chi _{y}}&\cdot &0&\cdot &\color {Orange}{-\phi _{y}}&0&\color {Cyan}{{\tilde {\phi }}_{y}^{+1}}&\cdot &1&\cdot &\color {Cyan}{{\tilde {\chi }}_{y}^{-1}}\\\color {Orange}{+\chi _{x}}&\cdot &\cdot &0&\color {Orange}{-\phi _{z}}&0&\color {Cyan}{{\tilde {\phi }}_{z}^{+1}}&1&\cdot &\cdot &\color {Cyan}{{\tilde {\chi }}_{z}^{-1}}\\\color {Orange}{-\psi }&\color {Orange}{+\phi _{x}}&\color {Orange}{+\phi _{y}}&\color {Orange}{+\phi _{z}}&0&0&1&\color {Cyan}{{\tilde {\phi }}_{z}^{-1}}&\color {Cyan}{{\tilde {\phi }}_{y}^{-1}}&\color {Cyan}{{\tilde {\phi }}_{x}^{-1}}&\color {Cyan}{{\tilde {\psi }}^{+1}}\\0&0&0&0&0&-5&1&1&1&1&1\\\color {Cyan}{+\psi }&\color {Cyan}{-\phi _{x}}&\color {Cyan}{-\phi _{y}}&\color {Cyan}{-\phi _{z}}&0&1&1&\color {Orange}{{\tilde {\phi }}_{z}^{+1}}&\color {Orange}{{\tilde {\phi }}_{y}^{+1}}&\color {Orange}{{\tilde {\phi }}_{x}^{+1}}&\color {Orange}{{\tilde {\psi }}^{-1}}\\\color {Cyan}{-\chi _{z}}&\cdot &\cdot &0&\color {Cyan}{+\phi _{z}}&1&\color {Orange}{{\tilde {\phi }}_{z}^{-1}}&1&\cdot &\cdot &\color {Orange}{{\tilde {\chi }}_{z}^{+1}}\\\color {Cyan}{-\chi _{y}}&\cdot &0&\cdot &\color {Cyan}{+\phi _{y}}&1&\color {Orange}{{\tilde {\phi }}_{y}^{-1}}&\cdot &1&\cdot &\color {Orange}{{\tilde {\chi }}_{y}^{+1}}\\\color {Cyan}{-\chi _{x}}&0&\cdot &\cdot &\color {Cyan}{+\phi _{x}}&1&\color {Orange}{{\tilde {\phi }}_{x}^{-1}}&\cdot &\cdot &1&\color {Orange}{{\tilde {\chi }}_{x}^{+1}}\\0&\color {Cyan}{+\chi _{x}}&\color {Cyan}{+\chi _{y}}&\color {Cyan}{+\chi _{z}}&\color {Cyan}{-\psi }&1&\color {Orange}{{\tilde {\psi }}^{+1}}&\color {Orange}{{\tilde {\chi }}_{z}^{-1}}&\color {Orange}{{\tilde {\chi }}_{y}^{-1}}&\color {Orange}{{\tilde {\chi }}_{x}^{-1}}&1\end{bmatrix}}}
Συνοπτική 11D Μήτρα [ ]
Συνοπτικά, η μήτρα αυτή μπορεί να γραφεί:
R
=
[
0
−
X
+
Ψ
0
Ψ
~
−
1
X
~
+
1
1
+
X
⋅
−
Φ
0
Φ
~
+
1
⋅
X
~
−
1
−
Ψ
+
Φ
0
0
1
Φ
~
−
1
Ψ
~
+
1
0
0
0
−
5
1
3
1
+
Ψ
−
Φ
0
1
1
Φ
~
+
1
Ψ
~
−
1
−
X
⋅
+
Φ
3
Φ
~
−
1
⋅
X
~
+
1
0
+
X
−
Ψ
1
Ψ
~
+
1
X
~
−
1
1
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-{\mathit {\mathrm {X} }}}&\color {Orange}{+{\mathit {\Psi }}}&0&\color {Cyan}{\mathit {\tilde {\Psi }}}^{-1}&\color {Cyan}{\mathit {\tilde {\mathrm {X} }}}^{+1}&1\\\color {Orange}{+{\mathit {\mathrm {X} }}}&\cdot &\color {Orange}{-{\mathit {\Phi }}}&0&\color {Cyan}{\mathit {\tilde {\Phi }}}^{+1}&\cdot &\color {Cyan}{\mathit {\tilde {\mathrm {X} }}}^{-1}\\\color {Orange}{-{\mathit {\Psi }}}&\color {Orange}{+{\mathit {\Phi }}}&0&0&1&\color {Cyan}{\mathit {\tilde {\Phi }}}^{-1}&\color {Cyan}{\mathit {\tilde {\Psi }}}^{+1}\\0&0&0&-5&1&3&1\\\color {Cyan}{+{\mathit {\Psi }}}&\color {Cyan}{-{\mathit {\Phi }}}&0&1&1&\color {Orange}{\mathit {\tilde {\Phi }}}^{+1}&\color {Orange}{\mathit {\tilde {\Psi }}}^{-1}\\\color {Cyan}{-{\mathit {\mathrm {X} }}}&\cdot &\color {Cyan}{+{\mathit {\Phi }}}&3&\color {Orange}{\mathit {\tilde {\Phi }}}^{-1}&\cdot &\color {Orange}{\mathit {\tilde {\mathrm {X} }}}^{+1}\\0&\color {Cyan}{+{\mathit {\mathrm {X} }}}&\color {Cyan}{-{\mathit {\Psi }}}&1&\color {Orange}{\mathit {\tilde {\Psi }}}^{+1}&\color {Orange}{\mathit {\tilde {\mathrm {X} }}}^{-1}&1\end{bmatrix}}}
Φωτεινή Πλευρά [ ]
R
=
[
0
−
χ
x
+
χ
y
−
χ
z
+
ψ
+
χ
x
0
−
θ
z
+
θ
y
−
ϕ
x
−
χ
y
+
θ
z
0
−
θ
x
+
ϕ
y
+
χ
x
−
θ
y
+
θ
x
0
−
ϕ
z
−
ψ
+
ϕ
x
−
ϕ
y
+
ϕ
z
0
0
0
0
0
0
+
ψ
−
ϕ
x
+
ϕ
y
−
ϕ
z
0
−
χ
z
+
θ
y
−
θ
x
0
+
ϕ
z
+
χ
y
−
θ
z
0
+
θ
x
−
ϕ
y
−
χ
x
0
+
θ
z
+
θ
y
+
ϕ
x
0
+
χ
x
−
χ
y
+
χ
z
−
ψ
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-\chi _{x}}&\color {Orange}{+\chi _{y}}&\color {Orange}{-\chi _{z}}&\color {Orange}{+\psi }\\\color {Orange}{+\chi _{x}}&0&\color {Red}{-\theta _{z}}&\color {Red}{+\theta _{y}}&\color {Orange}{-\phi _{x}}\\\color {Orange}{-\chi _{y}}&\color {Red}{+\theta _{z}}&0&\color {Red}{-\theta _{x}}&\color {Orange}{+\phi _{y}}\\\color {Orange}{+\chi _{x}}&\color {Red}{-\theta _{y}}&\color {Red}{+\theta _{x}}&0&\color {Orange}{-\phi _{z}}\\\color {Orange}{-\psi }&\color {Orange}{+\phi _{x}}&\color {Orange}{-\phi _{y}}&\color {Orange}{+\phi _{z}}&0\\0&0&0&0&0\\\color {Cyan}{+\psi }&\color {Cyan}{-\phi _{x}}&\color {Cyan}{+\phi _{y}}&\color {Cyan}{-\phi _{z}}&0\\\color {Cyan}{-\chi _{z}}&\color {Blue}{+\theta _{y}}&\color {Blue}{-\theta _{x}}&0&\color {Cyan}{+\phi _{z}}\\\color {Cyan}{+\chi _{y}}&\color {Blue}{-\theta _{z}}&0&\color {Blue}{+\theta _{x}}&\color {Cyan}{-\phi _{y}}\\\color {Cyan}{-\chi _{x}}&0&\color {Blue}{+\theta _{z}}&\color {Blue}{+\theta _{y}}&\color {Cyan}{+\phi _{x}}\\0&\color {Cyan}{+\chi _{x}}&\color {Cyan}{-\chi _{y}}&\color {Cyan}{+\chi _{z}}&\color {Cyan}{-\psi }\end{bmatrix}}}
Πραγματικό Τμήμα [ ]
R
=
[
0
−
χ
x
+
χ
y
−
χ
z
+
ψ
+
χ
x
0
−
θ
z
+
θ
y
−
ϕ
x
−
χ
y
+
θ
z
0
−
θ
x
+
ϕ
y
+
χ
x
−
θ
y
+
θ
x
0
−
ϕ
z
−
ψ
+
ϕ
x
−
ϕ
y
+
ϕ
z
0
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-\chi _{x}}&\color {Orange}{+\chi _{y}}&\color {Orange}{-\chi _{z}}&\color {Orange}{+\psi }\\\color {Orange}{+\chi _{x}}&0&\color {Red}{-\theta _{z}}&\color {Red}{+\theta _{y}}&\color {Orange}{-\phi _{x}}\\\color {Orange}{-\chi _{y}}&\color {Red}{+\theta _{z}}&0&\color {Red}{-\theta _{x}}&\color {Orange}{+\phi _{y}}\\\color {Orange}{+\chi _{x}}&\color {Red}{-\theta _{y}}&\color {Red}{+\theta _{x}}&0&\color {Orange}{-\phi _{z}}\\\color {Orange}{-\psi }&\color {Orange}{+\phi _{x}}&\color {Orange}{-\phi _{y}}&\color {Orange}{+\phi _{z}}&0\\\end{bmatrix}}}
Χρονικό Τμήμα [ ]
R
=
[
0
0
0
0
+
ψ
0
0
0
0
−
ϕ
x
0
0
0
0
+
ϕ
y
0
0
0
0
−
ϕ
z
−
ψ
+
ϕ
x
−
ϕ
y
+
ϕ
z
0
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{\mathit {0}}&\color {Orange}{\mathit {0}}&\color {Orange}{\mathit {0}}&\color {Orange}{+\psi }\\\color {Orange}{\mathit {0}}&0&\color {Red}{\mathit {0}}&\color {Red}{\mathit {0}}&\color {Orange}{-\phi _{x}}\\\color {Orange}{\mathit {0}}&\color {Red}{\mathit {0}}&0&\color {Red}{\mathit {0}}&\color {Orange}{+\phi _{y}}\\\color {Orange}{\mathit {0}}&\color {Red}{\mathit {0}}&\color {Red}{\mathit {0}}&0&\color {Orange}{-\phi _{z}}\\\color {Orange}{-\psi }&\color {Orange}{+\phi _{x}}&\color {Orange}{-\phi _{y}}&\color {Orange}{+\phi _{z}}&0\\\end{bmatrix}}}
3D- Χωρική Στροφή [ ]
R
=
[
0
−
θ
z
+
θ
y
+
θ
z
0
−
θ
x
−
θ
y
+
θ
x
0
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Red}{-\theta _{z}}&\color {Red}{+\theta _{y}}\\\color {Red}{+\theta _{z}}&0&\color {Red}{-\theta _{x}}\\\color {Red}{-\theta _{y}}&\color {Red}{+\theta _{x}}&0\\\end{bmatrix}}}
4D-Μη-χωρική Περιστροφή [ ]
R
=
[
0
−
χ
x
+
χ
y
−
χ
z
+
ψ
+
χ
x
0
⋅
⋅
−
ϕ
x
−
χ
y
⋅
0
⋅
+
ϕ
y
+
χ
x
⋅
⋅
0
−
ϕ
z
−
ψ
+
ϕ
x
−
ϕ
y
+
ϕ
z
0
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-\chi _{x}}&\color {Orange}{+\chi _{y}}&\color {Orange}{-\chi _{z}}&\color {Orange}{+\psi }\\\color {Orange}{+\chi _{x}}&0&\cdot &\cdot &\color {Orange}{-\phi _{x}}\\\color {Orange}{-\chi _{y}}&\cdot &0&\cdot &\color {Orange}{+\phi _{y}}\\\color {Orange}{+\chi _{x}}&\cdot &\cdot &0&\color {Orange}{-\phi _{z}}\\\color {Orange}{-\psi }&\color {Orange}{+\phi _{x}}&\color {Orange}{-\phi _{y}}&\color {Orange}{+\phi _{z}}&0\\\end{bmatrix}}}
4D-Χρονική Στροφή [ ]
R
(
−
ϕ
)
=
[
0
⋅
⋅
−
ϕ
x
⋅
0
⋅
+
ϕ
y
⋅
⋅
0
−
ϕ
z
+
ϕ
x
−
ϕ
y
+
ϕ
z
0
]
{\displaystyle {\mathcal {R}}(\color {Orange}{-\phi })={\begin{bmatrix}0&\cdot &\cdot &\color {Orange}{-\phi _{x}}\\\cdot &0&\cdot &\color {Orange}{+\phi _{y}}\\\cdot &\cdot &0&\color {Orange}{-\phi _{z}}\\\color {Orange}{+\phi _{x}}&\color {Orange}{-\phi _{y}}&\color {Orange}{+\phi _{z}}&0\\\end{bmatrix}}}
4D-Φορτιακό τμήμα [ ]
R
=
[
0
−
χ
x
+
χ
y
−
χ
z
+
χ
x
0
⋅
⋅
−
χ
y
⋅
0
⋅
+
χ
x
⋅
⋅
0
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\color {Orange}{-\chi _{x}}&\color {Orange}{+\chi _{y}}&\color {Orange}{-\chi _{z}}\\\color {Orange}{+\chi _{x}}&0&\cdot &\cdot \\\color {Orange}{-\chi _{y}}&\cdot &0&\cdot \\\color {Orange}{+\chi _{x}}&\cdot &\cdot &0\\\end{bmatrix}}}
5D-QPT Αναστροφή [ ]
R
=
[
0
⋅
⋅
⋅
+
ψ
⋅
0
⋅
⋅
⋅
⋅
⋅
0
⋅
⋅
⋅
⋅
⋅
0
⋅
−
ψ
⋅
⋅
⋅
0
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&\cdot &\cdot &\cdot &\color {Orange}{+\psi }\\\cdot &0&\cdot &\cdot &\cdot \\\cdot &\cdot &0&\cdot &\cdot \\\cdot &\cdot &\cdot &0&\cdot \\\color {Orange}{-\psi }&\cdot &\cdot &\cdot &0\\\end{bmatrix}}}
Φανταστικό Τμήμα [ ]
R
=
[
0
0
0
0
0
+
ψ
−
ϕ
x
+
ϕ
y
−
ϕ
z
0
−
χ
z
+
θ
y
−
θ
x
0
+
ϕ
z
+
χ
y
−
θ
z
0
+
θ
x
−
ϕ
y
−
χ
x
0
+
θ
z
−
θ
y
+
ϕ
x
0
+
χ
x
−
χ
y
+
χ
z
−
ψ
]
{\displaystyle {\mathcal {R}}={\begin{bmatrix}0&0&0&0&0\\\color {Cyan}{+\psi }&\color {Cyan}{-\phi _{x}}&\color {Cyan}{+\phi _{y}}&\color {Cyan}{-\phi _{z}}&0\\\color {Cyan}{-\chi _{z}}&\color {Blue}{+\theta _{y}}&\color {Blue}{-\theta _{x}}&0&\color {Cyan}{+\phi _{z}}\\\color {Cyan}{+\chi _{y}}&\color {Blue}{-\theta _{z}}&0&\color {Blue}{+\theta _{x}}&\color {Cyan}{-\phi _{y}}\\\color {Cyan}{-\chi _{x}}&0&\color {Blue}{+\theta _{z}}&\color {Blue}{-\theta _{y}}&\color {Cyan}{+\phi _{x}}\\0&\color {Cyan}{+\chi _{x}}&\color {Cyan}{-\chi _{y}}&\color {Cyan}{+\chi _{z}}&\color {Cyan}{-\psi }\end{bmatrix}}}
Κίνδυνοι Χρήσης
Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia " δεν μπορεί να εγγυηθεί, από καμιά άποψη ,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.
"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."
Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία ,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.
Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web ),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο .
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.
- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν
>>Διαμαρτυρία προς την wikia <<
- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)