Science Wiki
Advertisement

Γραμμική Μορφή

Linear form


Linear-Form-01-goog

Γραμμική Μορφή Γραμμικότητα

- Ένα Μαθηματικό Δόμημα.

Ετυμολογία[]

Η ονομασία "Γραμμική" σχετίζεται ετυμολογικά με την λέξη "γραμμικότητα".

Εισαγωγή[]

In linear algebra, a linear functional or linear form (also called a one-form or covector) is a linear map from a vector space to its field of scalars

In Rn, if vectors are represented as column vectors, then linear functionals are represented as row vectors, and their action on vectors is given by the dot product, or the matrix product with the row vector on the left and the column vector on the right. 

In general, if V is a vector space over a field k, then a linear functional f is a function from V to k, which is linear:

for all
for all

The set of all linear functionals from V to k, Homk(V,k), is itself a vector space over k.  This space is called the dual space of V, or sometimes the algebraic dual space, to distinguish it from the continuous dual space.  It is often written V* or V′ when the field k is understood.

Continuous linear functionals[]

If V is a topological vector space, the space of continuous linear functionals — the continuous dual — is often simply called the dual space. 

If V is a Banach space, then so is its (continuous) dual. 

To distinguish the ordinary dual space from the continuous dual space, the former is sometimes called the algebraic dual

In finite dimensions, every linear functional is continuous, so the continuous dual is the same as the algebraic dual, although this is not true in infinite dimensions.

Examples and applications[]

Linear functionals in Rn[]

Suppose that vectors in the real coordinate space Rn are represented as column vectors

Then any linear functional can be written in these coordinates as a sum of the form:

This is just the matrix product of the row vector [a1 ... an] and the column vector :

Integration[]

Linear functionals first appeared in functional analysis, the study of vector spaces of functions

A typical example of a linear functional is integration:
the linear transformation defined by the Riemann integral

is a linear functional from the vector space C[a,b] of continuous functions on the interval [ab] to the real numbers. 

The linearity of I(f) follows from the standard facts about the integral:

Evaluation[]

Let Pn denote the vector space of real-valued polynomial functions of degree ≤n defined on an interval [a,b].  If c ∈ [ab], then let evc : Pn → R be the evaluation functional:

The mapping f → f(c) is linear since

If x0, ..., xn are n+1 distinct points in [a,b], then the evaluation functionals evxi, i=0,1,...,n form a basis of the dual space of Pn.  (Πρότυπο:Harvtxt proves this last fact using Lagrange interpolation.)

Application to quadrature[]

The integration functional I defined above defines a linear functional on the subspace Pn of polynomials of degree ≤ n.  If x0, …, xn are n+1 distinct points in [a,b], then there are coefficients a0, …, an for which

for all f ∈ Pn.  This forms the foundation of the theory of numerical quadrature.

This follows from the fact that the linear functionals evxi : f → f(xi) defined above form a basis of the dual space of Pn Πρότυπο:Harv.

Linear functionals in quantum mechanics[]

Linear functionals are particularly important in quantum mechanics.  Quantum mechanical systems are represented by Hilbert spaces, which are anti-isomorphic to their own dual spaces.  A state of a quantum mechanical system can be identified with a linear functional.  For more information see bra-ket notation.

Distributions[]

In the theory of generalized functions, certain kinds of generalized functions called distributions can be realized as linear functionals on spaces of test functions.

Properties[]

  • Any linear functional L is either trivial (equal to 0 everywhere) or surjective onto the scalar field.  Indeed, this follows since just as the image of a vector subspace under a linear transformation is a subspace, so is the image of V under L.  But the only subspaces (i.e., k-subspaces) of k are {0} and k itself.
  • A linear functional is continuous if and only if its kernel is closed Πρότυπο:Harv.
  • Linear functionals with the same kernel are proportional.
  • The absolute value of any linear functional is a seminorm on its vector space.

Visualizing linear functionals[]

In finite dimensions, a linear functional can be visualized in terms of its level sets

In three dimensions, the level sets of a linear functional are a family of mutually parallel planes; in higher dimensions, they are parallel hyperplanes

This method of visualizing linear functionals is sometimes introduced in general relativity texts, such as "Gravitation" by Πρότυπο:Harvtxt. Πρότυπο:-

Dual vectors and bilinear forms[]

Every non-degenerate bilinear form on a finite-dimensional vector space V gives rise to an isomorphism from V to V*. Specifically, denoting the bilinear form on V by < , > (for instance in Euclidean space <v,w> = vw is the dot product of v and w), then there is a natural isomorphism given by

The inverse isomorphism is given by where f* is the unique element of V for which for all w ∈ V

The above defined vector v* ∈ V* is said to be the dual vector of v ∈ V.

In an infinite dimensional Hilbert space, analogous results hold by the Riesz representation theorem.  There is a mapping V → V* into the continuous dual space V*.  However, this mapping is antilinear rather than linear. Πρότυπο:-

Bases in finite dimensions[]

Basis of the dual space in finite dimensions[]

Let the vector space V have a basis , not necessarily orthogonal.  Then the dual space V* has a basis called the dual basis defined by the special property that

Or, more succinctly,

where δ is the Kronecker delta.  Here the superscripts of the basis functionals are not exponents but are instead contravariant indices.

A linear functional belonging to the dual space can be expressed as a linear combination of basis functionals, with coefficients ("components") ui,

Then, applying the functional to a basis vector ej yields

due to linearity of scalar multiples of functionals and pointwise linearity of sums of functionals.  Then

that is

This last equation shows that an individual component of a linear functional can be extracted by applying the functional to a corresponding basis vector.

The dual basis and inner product[]

When the space V carries an inner product, then it is possible to write explicitly a formula for the dual basis of a given basis.  Let V have (not necessarily orthogonal) basis .  In three dimensions (n = 3), the dual basis can be written explicitly

for i = 1, 2, 3, where ε is the Levi-Civita symbol and the inner product (or dot product) on V.

In higher dimensions, this generalizes as follows

where is the Hodge star operator.

Υποσημειώσεις[]

Εσωτερική Αρθρογραφία[]

Βιβλιογραφία[]

Ιστογραφία[]


Ikl Κίνδυνοι ΧρήσηςIkl

Αν και θα βρείτε εξακριβωμένες πληροφορίες
σε αυτήν την εγκυκλοπαίδεια
ωστόσο, παρακαλούμε να λάβετε σοβαρά υπ' όψη ότι
η "Sciencepedia" δεν μπορεί να εγγυηθεί, από καμιά άποψη,
την εγκυρότητα των πληροφοριών που περιλαμβάνει.

"Οι πληροφορίες αυτές μπορεί πρόσφατα
να έχουν αλλοιωθεί, βανδαλισθεί ή μεταβληθεί από κάποιο άτομο,
η άποψη του οποίου δεν συνάδει με το "επίπεδο γνώσης"
του ιδιαίτερου γνωστικού τομέα που σας ενδιαφέρει."

Πρέπει να λάβετε υπ' όψη ότι
όλα τα άρθρα μπορεί να είναι ακριβή, γενικώς,
και για μακρά χρονική περίοδο,
αλλά να υποστούν κάποιο βανδαλισμό ή ακατάλληλη επεξεργασία,
ελάχιστο χρονικό διάστημα, πριν τα δείτε.



Επίσης,
Οι διάφοροι "Εξωτερικοί Σύνδεσμοι (Links)"
(όχι μόνον, της Sciencepedia
αλλά και κάθε διαδικτυακού ιστότοπου (ή αλλιώς site)),
αν και άκρως απαραίτητοι,
είναι αδύνατον να ελεγχθούν
(λόγω της ρευστής φύσης του Web),
και επομένως είναι ενδεχόμενο να οδηγήσουν
σε παραπλανητικό, κακόβουλο ή άσεμνο περιεχόμενο.
Ο αναγνώστης πρέπει να είναι
εξαιρετικά προσεκτικός όταν τους χρησιμοποιεί.

- Μην κάνετε χρήση του περιεχομένου της παρούσας εγκυκλοπαίδειας
αν διαφωνείτε με όσα αναγράφονται σε αυτήν

IonnKorr-System-00-goog



>>Διαμαρτυρία προς την wikia<<

- Όχι, στις διαφημίσεις που περιέχουν απαράδεκτο περιεχόμενο (άσεμνες εικόνες, ροζ αγγελίες κλπ.)


Advertisement