Наука
Advertisement

https://ru.wikipedia.org/wiki/%D0%90%D1%81%D1%82%D0%B5%D1%80%D0%BE%D0%B8%D0%B4


Asteroidsscale

Составное изображение (в масштабе) астероидов, снятых в высоком разрешении. На 2011 год это были, от большего к меньшему: (4) Веста, (21) Лютеция, (253) Матильда, (243) Ида и его спутник Дактиль, (433) Эрос, (951) Гаспра, (2867) Штейнс, (25143) Итокава

4 Vesta 1 Ceres Moon at 20 km per px

Сравнительные размеры астероида (4) Веста, карликовой планеты Церера и Луны. Разрешение 20 км на пиксель

Астеро́ид (распространённый до 2006 года синоним — малая планета) — относительно небольшое небесное тело Солнечной системы, движущееся по орбите вокруг Солнца. Астероиды значительно уступают по массе и размерам планетам, имеют неправильную форму и не имеют атмосферы, хотя при этом и у них могут быть спутники.

Определения[]

Термин астероид (от др.-греч. ἀστεροειδής — «подобный звезде», из ἀστήρ — «звезда» и εἶδος — «вид, наружность, качество») был придуман композитором Чарлзом Бёрни[1] и введён Уильямом Гершелем на основании того, что эти объекты при наблюдении в телескоп выглядели, как точки звёзд — в отличие от планет, которые при наблюдении в телескоп выглядят дисками. Точное определение термина «астероид» до сих пор не является установившимся. До 2006 года астероиды также называли малыми планетами.

Главный параметр, по которому проводится классификация, — размер тела. Астероидами считаются тела с диаметром более 30 м, тела меньшего размера называют метеороидами[2].

В 2006 году Международный астрономический союз отнёс большинство астероидов к малым телам Солнечной системы[3].

Астероиды в Солнечной системе[]

InnerSolarSystem ru

Главный пояс астероидов (белый цвет) и троянские астероиды Юпитера (зелёный цвет)

В настоящий момент в Солнечной системе обнаружены сотни тысяч астероидов. По состоянию на 11 января 2015 г. в базе данных насчитывалось 670 474 объекта, из которых для 422 636 точно определены орбиты и им присвоен официальный номер[4], более 19 000 из них имели официально утверждённые наименования[5][6]. Предполагается, что в Солнечной системе может находиться от 1,1 до 1,9 миллиона объектов, имеющих размеры более 1 км[7]. Большинство известных на данный момент астероидов сосредоточено в пределах пояса астероидов, расположенного между орбитами Марса и Юпитера.

Самым крупным астероидом в Солнечной системе считалась Церера, имеющая размеры приблизительно 975×909 км, однако с 24 августа 2006 года она получила статус карликовой планеты. Два других крупнейших астероида (2) Паллада и (4) Веста имеют диаметр ~500 км. (4) Веста является единственным объектом пояса астероидов, который можно наблюдать невооружённым глазом. Астероиды, движущиеся по другим орбитам, также могут быть наблюдаемы в период прохождения вблизи Земли (см., например, (99942) Апофис).

Общая масса всех астероидов главного пояса оценивается в 3,0—3,6×1021 кг[8], что составляет всего около 4 % от массы Луны. Масса Цереры — 9,5×1020 кг, то есть около 32 % от общей, а вместе с тремя крупнейшими астероидами (4) Веста (9 %), (2) Паллада (7 %), (10) Гигея (3 %) — 51 %, то есть абсолютное большинство астероидов имеют ничтожную по астрономическим меркам массу.

Изучение астероидов[]

Изучение астероидов началось после открытия в 1781 году Уильямом Гершелем планеты Уран. Его среднее гелиоцентрическое расстояние оказалось соответствующим правилу Тициуса — Боде.

В конце XVIII века Франц Ксавер организовал группу из 24 астрономов. С 1789 года эта группа занималась поисками планеты, которая, согласно правилу Тициуса-Боде, должна была находиться на расстоянии около 2,8 астрономических единиц от Солнца — между орбитами Марса и Юпитера. Задача состояла в описании координат всех звёзд в области зодиакальных созвездий на определённый момент. В последующие ночи координаты проверялись, и выделялись объекты, которые смещались на большее расстояние. Предполагаемое смещение искомой планеты должно было составлять около 30 угловых секунд в час, что должно было быть легко замечено.

По иронии судьбы первый астероид, Церера, был обнаружен итальянцем Пиацци, не участвовавшим в этом проекте, случайно, в 1801 году, в первую же ночь столетия. Три других — (2) Паллада, (3) Юнона и (4) Веста были обнаружены в последующие несколько лет — последний, Веста, в 1807 году. Ещё через 8 лет бесплодных поисков большинство астрономов решило, что там больше ничего нет, и прекратило исследования.

Однако Карл Людвиг Хенке проявил настойчивость, и в 1830 году возобновил поиск новых астероидов. Пятнадцать лет спустя он обнаружил Астрею, первый новый астероид за 38 лет. Он также обнаружил Гебу менее чем через два года. После этого другие астрономы подключились к поискам, и далее обнаруживалось не менее одного нового астероида в год (за исключением 1945 года).

В 1891 году Макс Вольф впервые использовал для поиска астероидов метод астрофотографии, при котором на фотографиях с длинным периодом экспонирования астероиды оставляли короткие светлые линии. Этот метод значительно ускорил обнаружение новых астероидов по сравнению с ранее использовавшимися методами визуального наблюдения: Макс Вольф в одиночку обнаружил 248 астероидов, начиная с (323) Брюсия, тогда как до него было обнаружено немногим более 300. Сейчас, век спустя, 385 тысяч астероидов имеют официальный номер, а 18 тысяч из них — ещё и имя.

В 2010 г. две независимые группы астрономов из США, Испании и Бразилии заявили, что одновременно обнаружили водяной лёд на поверхности одного из самых крупных астероидов главного пояса — Фемиды. Это открытие позволяет понять происхождение воды на Земле. В начале своего существования Земля была слишком горяча, чтобы удержать достаточное количество воды. Это вещество должно было прибыть позднее. Предполагалось, что воду на Землю могли занести кометы, но изотопный состав земной воды и воды в кометах не совпадает. Поэтому можно предположить, что вода на Землю была занесена при её столкновении с астероидами. Исследователи также обнаружили на Фемиде сложные углеводороды, в том числе молекулы — предшественники жизни[9].

Именование астероидов[]

Сначала астероидам давали имена героев римской и греческой мифологии, позднее открыватели получили право называть их как угодно — например, своим именем. Вначале астероидам давались преимущественно женские имена, мужские имена получали только астероиды, имеющие необычные орбиты (например, Икар, приближающийся к Солнцу ближе Меркурия). Позднее и это правило перестало соблюдаться.

Получить имя может не любой астероид, а лишь тот, орбита которого более или менее надёжно вычислена. Были случаи, когда астероид получал имя спустя десятки лет после открытия. До тех пор, пока орбита не вычислена, астероиду даётся временное обозначение, отражающее дату его открытия, например, 1950 DA. Цифры обозначают год, первая буква — номер полумесяца в году, в котором астероид был открыт (в приведённом примере это вторая половина февраля). Вторая буква обозначает порядковый номер астероида в указанном полумесяце, в нашем примере астероид был открыт первым. Так как полумесяцев 24, а английских букв — 26, в обозначении не используются две буквы: I (из-за сходства с единицей) и Z. Если количество астероидов, открытых в течение полумесяца, превысит 24, вновь возвращаются к началу алфавита, приписывая второй букве индекс 2, при следующем возвращении — 3, и т. д.

После получения имени официальное именование астероида состоит из числа (порядкового номера) и названия — (1) Церера, (8) Флора и т. д.

Определение формы и размеров астероида[]

951 Gaspra

Астероид (951) Гаспра. Одно из первых изображений астероида, полученных с космического аппарата. Передано космическим зондом «Галилео» во время его пролёта мимо Гаспры в 1991 году (цвета усилены)

Первые попытки измерить диаметры астероидов, используя метод прямого измерения видимых дисков с помощью нитяного микрометра (англ.), предприняли Уильям Гершель в 1802 и Иоганн Шрётер в 1805 годах. После них в XIX веке аналогичным способом проводились измерения наиболее ярких астероидов другими астрономами. Основным недостатком данного метода были значительные расхождения результатов (например, минимальные и максимальные размеры Цереры, полученные разными учёными, отличались в десять раз).

Современные способы определения размеров астероидов включают в себя методы поляриметрии, радиолокационный, спекл-интерферометрии, транзитный и тепловой радиометрии[10].

Одним из наиболее простых и качественных является транзитный метод. Во время движения астероида относительно Земли он иногда проходит на фоне отделённой звезды, это явление называется покрытие звёзд астероидом. Измерив длительность снижения яркости данной звезды и зная расстояние до астероида, можно достаточно точно определить его размер. Данный метод позволяет достаточно точно определять размеры крупных астероидов, вроде Паллады[11].

Метод поляриметрии заключается в определении размера на основании яркости астероида. Чем больше астероид, тем больше солнечного света он отражает. Однако яркость астероида сильно зависит от альбедо поверхности астероида, что в свою очередь определяется составом слагающих его пород. Например, астероид Веста из-за высокого альбедо своей поверхности отражает в 4 раза больше света, чем Церера и является самым заметным астероидом на небе, который иногда можно наблюдать невооружённым глазом.

Однако само альбедо тоже можно определить достаточно легко. Дело в том, что чем меньше яркость астероида, то есть чем меньше он отражает солнечной радиации в видимом диапазоне, тем больше он её поглощает и, нагреваясь, излучает её затем в виде тепла в инфракрасном диапазоне.

Метод поляриметрии может быть также использован для определения формы астероида, путём регистрации изменения его блеска в процессе вращения, так и для определения периода этого вращения, а также для выявления крупных структур на поверхности[11]. Кроме того, результаты, полученные с помощью инфракрасных телескопов (англ.), используются для определения размеров методом тепловой радиометрии[10].

Классификация астероидов[]

Общая классификация астероидов основана на характеристиках их орбит и описании видимого спектра солнечного света, отражаемого их поверхностью.

Группы орбит и семейства[]

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Обычно группа получает название по имени первого астероида, который был обнаружен на данной орбите. Группы — относительно свободные образования, тогда как семейства — более плотные, образованные в прошлом при разрушении крупных астероидов от столкновений с другими объектами.

Спектральные классы[]

В 1975 году Кларк Р. Чапмен, Дэвид Моррисон (David Morrison) и Бен Целлнер (Ben Zellner) разработали систему классификации астероидов, опирающуюся на показатели цвета, альбедо и характеристики спектра отражённого солнечного света.[12] Изначально эта классификация определяла только три типа астероидов[13]:

Этот список был позже расширен и число типов продолжает расти по мере того, как детально изучается все больше астероидов:

  • Класс A — характеризуются достаточно высоким альбедо (между 0,17 и 0,35) и красноватым цветом в видимой части спектра.
  • Класс B — в целом относятся к астероидам класса C, но почти не поглощают волны ниже 0,5 мкм, а их спектр слегка голубоватый. Альбедо в целом выше, чем у других углеродных астероидов.
  • Класс D — характеризуются очень низким альбедо (0,02−0,05) и ровным красноватым спектром без чётких линий поглощения.
  • Класс E — поверхность этих астероидов содержит в своём составе такой минерал, как энстатит и может иметь сходство с ахондритами.
  • Класс F — в целом схожи с астероидами класса B, но без следов «воды».
  • Класс G — характеризуется низким альбедо и почти плоским (и бесцветным) в видимом диапазоне спектром отражения, что свидетельствует о сильном ультрафиолетовом поглощении.
  • Класс P — как и астероиды класса D, характеризуются довольно низким альбедо, (0,02−0,07) и ровным красноватым спектром без чётких линий поглощения.
  • Класс Q — на длине волны 1 мкм в спектре этих астероидов присутствуют яркие и широкие линии оливина и пироксена и, кроме того, особенности, указывающие на наличие металла.
  • Класс R — характеризуются относительно высоким альбедо и красноватый спектром отражения на длине 0,7 мкм.
  • Класс T — характеризуется низким альбедо и красноватым спектром (с умеренным поглощением на длине волны 0,85 мкм), который похож на спектр астероидов P- и D- классов, но по наклону занимающий промежуточное положение.
  • Класс V — астероиды этого класса умеренно яркие и довольно близки к более общему S классу, которые также в основном состоят из камня, силикатов и железа (хондритов), но отличаются S более высоким содержанием пироксена.
  • Класс J — это класс астероидов, образовавшихся, предположительно, из внутренних частей Весты. Их спектры близки к спектрам астероидов V класса, но их отличает особо сильные линии поглощения на длине волны 1 мкм.

Следует учитывать, что количество известных астероидов, отнесённых к какому-либо типу, не обязательно соответствует действительности. Некоторые типы достаточно сложны для определения, и тип определённого астероида может быть изменён при более тщательных исследованиях.

Проблемы спектральной классификации[]

Изначально спектральная классификация основывалась на трёх типах материала, составляющего астероиды:

Однако существуют сомнения в том, что такая классификация однозначно определяет состав астероида. В то время, как различный спектральный класс астероидов указывает на их различный состав, нет никаких доказательств того, что астероиды одного спектрального класса состоят из одинаковых материалов. В результате учёные не приняли новую систему, и внедрение спектральной классификации остановилось.

Распределение по размерам[]

Количество астероидов заметно уменьшается с ростом их размеров. Хотя это в целом соответствует степенному закону, есть пики при 5 км и 100 км, где больше астероидов, чем ожидалось бы в соответствии логарифмическому распределению.[14]

Приблизительное количество астероидов N с диаметром больше чем D
D 100 м 300 м 500 м 1 км 3 км 5 км 10 км 30 км 50 км 100 км 200 км 300 км 500 км 900 км
N 25 000 000 4 000 000 2 000 000 750 000 200 000 90 000 10 000 1100 600 200 30 5 3 1

Образование астероидов[]

Считается, что планетезимали в поясе астероидов эволюционировали так же, как и в других областях солнечной туманности до того времени, пока Юпитер не достиг своей текущей массы, после чего вследствие орбитальных резонансов с Юпитером из пояса было выброшено более 99 % планетезималей. Моделирование и скачки распределений скоростей вращения и спектральных свойств показывают, что астероиды диаметром более 120 км образовались в результате аккреции в эту раннюю эпоху, в то время как меньшие тела являются осколками от столкновений между астероидами во время или после рассеивания изначального пояса гравитацией Юпитера[15]. Церера и Веста приобрели достаточно большой размер для гравитационной дифференциации, при которой тяжёлые металлы погрузились к ядру, а кора сформировалась из более лёгких скальных пород[16].

В модели Ниццы многие объекты пояса Койпера образовались во внешнем поясе астероидов, на расстоянии более чем 2,6 а.е. Большинство из них были позже выброшены гравитацией Юпитера, но те, что остались, могут быть астероидами класса D, возможно, включая Цереру[17].

Опасность астероидов[]

Несмотря на то, что Земля значительно больше всех известных астероидов, столкновение с телом размером более 3 км может привести к уничтожению цивилизации. Столкновение с телом меньшего размера (но более 50 метров в диаметре) может привести к многочисленным жертвам и гигантскому экономическому ущербу.

Чем больше и тяжелее астероид, тем большую опасность он представляет, однако и обнаружить его в этом случае гораздо легче. Наиболее опасным на данный момент считается астероид Апофис, диаметром около 300 м, при столкновении с которым в случае точного попадания может быть уничтожен большой город, однако никакой угрозы человечеству в целом такое столкновение не несёт.

1 июня 2013 года астероид 1998 QE2 приблизился на самое близкое расстояние к Земле за последние 200 лет. Расстояние составило 5,8 млн километров[18].

Первые 30 астероидов[]

  1. Церера (ныне имеет статус карликовой планеты)
  2. Паллада
  3. Юнона
  4. Веста
  5. Астрея
  6. Геба
  7. Ирида
  8. Флора
  9. Метида
  10. Гигея
  11. Парфенопа
  12. Виктория
  13. Эгерия
  14. Ирена
  15. Эвномия
  16. Психея
  17. Фетида
  18. Мельпомена
  19. Фортуна
  20. Массалия
  21. Лютеция
  22. Каллиопа
  23. Талия
  24. Фемида
  25. Фокея
  26. Прозерпина
  27. Эвтерпа
  28. Беллона
  29. Амфитрита
  30. Урания

Символы[]

Первые 37 астероидов имеют астрономические символы. Они представлены в таблице.

Астероид Символы
(1) Церера Old planetary symbol of Ceres Variant symbol of Ceres Other sickle variant symbol of Ceres
(2) Паллада Old symbol of Pallas Variant symbol of Pallas
(3) Юнона Old symbol of Juno Other symbol of Juno
(4) Веста Modern astrological symbol of VestaOld symbol of Vesta Old planetary symbol of Vesta 4 Vesta Unsimplified Symbol
(5) Астрея 5 Astraea symbol alternate5 Astraea Symbol
(6) Геба 6 Hebe Astronomical Symbol
(7) Ирида 7 Iris Astronomical Symbol
(8) Флора 8 Flora Astronomical Symbol
(9) Метида 9 Metis symbol
(10) Гигея 10 Hygeia symbol alternate10 Hygiea Astronomical Symbol
(11) Парфенопа 11 Parthenope symbol alternate11 Parthenope symbol
(12) Виктория 12 Victoria symbol
(13) Эгерия Astronomical symbol of 13 Egeria
(14) Ирена Astronomical symbol of 14 Irene
(15) Эвномия 15 Eunomia symbol
(16) Психея 16 Psyche symbol
(17) Фетида 17 Thetis symbol
(18) Мельпомена 18 Melpomene symbol
(19) Фортуна 19 Fortuna symbol
(26) Прозерпина 26 Proserpina symbol
(28) Беллона 28 Bellona symbol
(29) Амфитрита 29 Amphitrite symbol
(35) Левкофея 35 Leukothea symbol
(37) Фидес 37 Fides symbol

См. также[]

Примечания[]

  1. Установлено истинное происхождение термина «астероид»
  2. Шустова Б. М., Рыхловой Л. В. Рис. 1.1 // Астероидно-кометная опасность: вчера, сегодня, завтра / Под ред. Шустова Б. М., Рыхловой Л. В.. — М.: Физматлит, 2010. — 384 с. — ISBN 978-5-9221-1241-3. (см. ISBN )
  3. News Release — IAU0603: IAU 2006 General Assembly: Result of the IAU Resolution votes (англ.) — Пресс-релиз МАС 24 августа 2006
  4. How Many Solar System Bodies
  5. MPC Archive Statistics. Проверено 11 января 2013. Архивировано из первоисточника 24 января 2012.
  6. Minor Planet Names. Проверено 11 января 2013. Архивировано из первоисточника 5 июля 2012.
  7. New study reveals twice as many asteroids as previously believed. Проверено 28 марта 2006. Архивировано из первоисточника 5 июля 2012.
  8. Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. (July 2002). "Hidden Mass in the Asteroid Belt". Icarus 158 (1): 98—105. doi:10.1006/icar.2002.6837.  
  9. Впервые найден водяной лёд на астероиде
  10. 10,0 10,1 Tedesco, E. (June 14—18, 1993). "Asteroid Albedos and Diameters". Proceedings of the 160th International Astronomical Union. Belgirate, Italy: Kluwer Academic Publishers. pp. 55—57. 
  11. 11,0 11,1 Lang, Kenneth R. (2003). The Cambridge Guide to the Solar System. p. 390—391. ISBN 978-0521813068. http://books.google.com/books?id=RdCUsMy3l7EC&pg=PA384. 
  12. Chapman, C. R., Morrison, D., & Zellner, B. (1975). "Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry". Icarus 25: 104—130.  
  13. McSween Jr., Harry Y.. Meteorites and Their Parent Planets. 0-521-58751-4. 
  14. Davis 2002, «Asteroids III», cited by Željko Ivezić
  15. "The fossilized size distribution of the main asteroid belt" (2005). Icarus 175. doi:10.1016/j.icarus.2004.10.026. Bibcode2005Icar..175..111B.  
  16. Kerrod, Robin (2000). Asteroids, Comets, and Meteors. Lerner Publications Co.. ISBN 0585317631. 
  17. William B. McKinnon, 2008, «On The Possibility Of Large KBOs Being Injected Into The Outer Asteroid Belt». American Astronomical Society, DPS meeting #40, #38.03
  18. В ночь на 1 июня большой астероид пролетит рядом над Землей

Ссылки[]


  1. Википедия Астероид адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Астероид и найти в:

  1. Вокруг света адрес
  2. Академик адрес
  3. Астронет адрес
  4. Элементы адрес
  5. Научная Россия адрес
  6. Кругосвет адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниеадрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Астероид 1», чтобы сохранить ее

Комментарии читателей:[]

Advertisement