Наука
Advertisement
  • Страница 0 - название энциклопедической статьи.
  • Страницы 1, ... - доп. материал, связанный с энциклопедической статьей, указывать в "Ссылки".
  • Страница: инфо , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25

Возвращение в Англию и научное признание[]

Он был выбран членом королевского общества в 1907 году, меньше чем через 3 года после чтения его первой оригинальной публикации. Его кандидатуру предложил Резерфорд. Было неизбежно, что его позовут в профессора в старом свете. В 1908 году он получил приглашение на должность профессора физики в Лидс, которое вернуло его в Англию. За время 22-летнего проживания в Австралии Брэгг приобрёл репутацию надежного человека и хорошего друга. Он имел множественные связи с Аделаидой и целиком наслаждался жизнью. В последние годы он всегда говорил о Южной Австралии с огромной любовью. В Лидсе Брэгг по началу был целиком занят организацией обучения в лаборатории и, естественно, практически не проводил экспериментов. Он выработал свои взгляды, что рентгеновские лучи и бета-частицы имели корпускулярную природу, а отсутствие притяжения в магнитном и электрическом полях он объяснял гипотезой, что элементарные лучи по своей природе являются нейтральным дуплетом — электрон, у которого есть темный плащ в виде положительного заряда, нейтрализующего его собственный заряд, и если говорить захватывающими словами Брэгга, несмотря на то, что эта картина больше не была удовлетворительна, он принимал во внимание многие свойства излучения, которые обрели форму в квантовой теории. В частности, Брэгг настаивал на том, что множество экспериментов показывающих, что элементарные бета- или гамма-лучи были определенными единицами, а не распространяющейся волной, как и было на самом деле. Дуалистическая теория также с успехом объяснила в общем виде разные аспекты превращения катодных лучей в рентгеновские и освобождение электронов рентгеновскими и гамма-лучами. Это было использовано для того, чтобы сконцентрировать внимание на на том аспекте, что излучение является частицами, который играет важную роль в современных теориях.

Во время работы над вторичным излучением Брэгг пришёл к выводу, что ионизирующая способность рентгеновских лучей является ненаправленной, потому что вторичные электроны освобождаются первичными рентгеновскими лучами. Он был первым, кто утверждал этот важный факт и подтвердил эти выводы экспериментами, проведенными в сотрудничестве с Портером, результаты которых были опубликованы в 1911 году.

Открытие Лауэ, Фридриха и Книппинга объявленное в июне 1912 года, что рентгеновские лучи дифрагируют, проходя через кристалл, вызвало сенсацию в мире физики. Брэгг был очень заинтересован этим явлением и вот что он писал в ноябрьском номере «Nature» за этот год: «Доктор Туттон предполагал, что новый эксперимент, возможно, позволит показать различия между волновой и корпускулярной теорией рентгеновских лучей. Нет сомнений в правильности его предположения. Если эксперимент поможет доказать единство природы рентгеновского излучения и света, тогда теория нейтральных пар окажется несостоятельной в объяснении всех фактов поведения излучения. С другой стороны свойства рентгеновских лучей хорошо описываются квазикорпускулярной теорией, и точные свойства света могут быть интерпретированы подобным же образом. Возникающая проблема, по моему мнению не решается посредством какой-то из этих теорий, но может быть разрешена посредством иной теории включающей возможности обеих.»

Теория дифракционных пятен, которую Лауэ создал в результате размышления над трехмерной решеткой, была довольно сложна и включала в себя предположения об интерференции волн в трехмерном пространстве. В том же году Брэгг предоставил более простое объяснение этого явления, приняв во внимание отражение волн от параллельных слоев атомов или дифракционных точек, каждая из которых является набором параллельных кристаллографических плоскостей, которые действуют как отражающие поверхности для излучения, длина волны которого подчиняется закону Брэгга λ n = 2 d sin α, где d — это расстояние между параллельными кристаллографическими плоскостями, α - угол, дополняющий угол падения. Таким образом, чем более плотно расположены данные кристаллографические поверхности, тем сильнее отражение, то есть плоскости с более высокими индексами отражают слабее. Брэгг начал проводить эксперименты над отражением рентгеновских лучей согласно своей интерпретации этого явления вместе со своим сыном, и затем, в начале 1913 года, вышла их первая совместная работа, которая заложила основание науки, занимающейся анализом кристаллов с помощью рентгеновских лучей.

До начала первой мировой войны в 1914 году Брэгг написал ещё 5 классических работ, при написании одной из которых - по структуре алмазов - он также сотрудничал со своим сыном. Среди тем, над которыми он трудился, были: Общая технология работы рентгеновского спектрометра, характеристики поглощения различных излучений и его эффекты, структура серы и кварца и общие вопросы энергии. Исследования, проведённые совместно с Пирсом, привели их к закону Брэгга-Пирса, в соответствии с которым, если удерживать частоты ниже полосы в которой происходит нарушение непрерывности поглощения, то коэффициент поглощения атома пропорционален четвёртой степени атомного номера и длине волны в степени 5/2. В ранних экспериментах Брэгг использовал ионизационную камеру для обнаружения и регистрации лучей. В своих ранних работах Брэгг научился преодолевать сложности, связанные с таким типом измерений, и он вместе со своим сыном имел блестящий успех при использовании ионизационного спектрометра. Фотографический метод уже использовался в это время Мозелем в своих классических исследованиях, Брэгг стал использовать его позднее.

Работы Брэгга и его сына Лоренса (Уильяма Лоуренса) в 19131914 годы заложили основу новой ветви науки, имеющей огромное значение — анализ кристаллической решетки при помощи рентгеновских лучей[1]. В фундаментальных исследованиях рентгеновских лучей при помощи их дифракции на кристаллах благодаря Лауэ и его коллегам были подтверждены их волновые свойства. Также следует отметить, что использование рентгеновских лучей как инструмента для систематического исследования структуры кристаллов стало возможно исключительно благодаря Брэггу. Его заслуги были отмечены Нобелевской премией по физике в 1915 году и последующим формальным признанием в Лейпциге, в 1928.

Деятельность в период Первой Мировой войны[]

Внезапно вспыхнувшая в 1914 году война застала Брэгга в Лидс за кропотливой работой и экспериментами по изучению кристаллической решетки. В университете его считали светилом науки, и он даже занимал кабинет проректора. В 1915 году он продолжал работы с гамма-лучами, и, помимо прочего опубликовал статью о кристаллах типа шпинели. В этом году он получил звание профессора физики в университетском колледже Лондона, но мало-помалу оказался втянут в военные разработки.

В июле 1915 года был учрежден Комитет по изобретениям и исследованиям, который давал Адмиралтейству экспертные оценки по организации и поддержке научных разработок, полезных флоту, и Брэгг стал её членом.

Подводные лодки представляли все более серьёзную опасность, и были необходимы методы акустического поиска подводных объектов. Брэггу было поручено руководить разработками методов обнаружения звуковых источников под водой, проводимых противоподлодочным отделением Адмиралтейства. В апреле 1916 года он был назначен заместителем директора по исследованиям в адмиралтейском исследовательском центре в Хоксридже. В Адмиралтействе Брэгг столкнулся с разнообразными проблемами (подробнее в работе «Recollections and Reflections» J.J.Thomson), и ему пришлось построить свою лабораторию в Parketson Quay, Гарвич, где он в 1917 году начал работу, руководя при этом другими физиками, в том числе A.O.Rankine. Разработанный Брэггом и его сотрудниками гидрофон, подводное звукоулавливающее устройство, сыграл важную роль для обороны от подводных лодок. Позже он был описан Брэггом в его «World of Sounds», книге, написанной на основе его Рождественских лекций в Королевском Институте, из которых две содержали отчеты, представленные в «Engineering» 13 июня 1919 г. На протяжении всей серии противо-подлодочных работ были развиты многие методы и инструменты, которые в дальнейшем оказались полезными. Помимо научного признания, за свои военные разработки Брэгг удостоился Превосходнейшего ордена Британской Империи и звания Командора Большого Креста в 1917 г., а в 1920 г. был посвящен в Рыцари Большого Креста. В том же 1920 году стал почётным членом Тринити-колледжа в Кэмбридже. Это событие было ему особенно приятно.

Работа в Университетском колледже Лондона[]

После войны Брэгг продолжил прежнюю работу в качестве профессора физики в Университетском коллежде Лондона и тут же занялся исследованиями. Он собрал несколько молодых исследователей, из которых следует следует упомянуть Бекхурста, и основал там свою научную школу после того, как секреты кристаллической решетки были освещены в Королевском Институте.

В 1921 году к нему присоединились Шерер, Астберри и, чуть позже, Мюллер и мисс Ярдли (миссис Лонсдейл в замужестве). В те дни Брэгг не только руководил работой других людей, но и собственноручно ставил эксперименты, садился за спектрометр при первой же возможности. В начале своего научного пути в Университетском колледже он пользовался старой проверенной ионизационной камерой, но постепенно отказался от неё в пользу фотопластинки. Оборудования в колледже по-началу не хватало, и Брэгг со своими студентами, в частности, Мюллером и Шерером, принялись разрабатывать новые приборы. Они научились использовать рентгеновские трубки, как с нитью накала, так и заполненные газом, ввели в оборот самоочищающиеся трубки, которые оказались довольно востребованы в последующие годы. Дело в том, что в то время вакуумные насосы были ещё недостаточно эффективны, и трубки с нитью были довольно проблемным инструментом. Эта работа была поддержана щедрым грантом от Департамента научных и промышленных исследований, который остался крайне доволен результатом.

В Университетском колледже Брэгг впервые столкнулся с кристаллической решеткой в органических соединениях. До этого он работал с монокристаллами и использовал порошковый метод. Он представил результаты исследований по нафталину и его производным в Физическом Обществе в 1921 г. в качестве президента, на должность которого был избран год назад. В своих работах он основывался на идее, что бензольное или нафталиновое кольцо — это реально существующая структура, сохраняющая свои размеры и свойства от соединения к соединению. К счастью для химиков-органиков, его исследования подтвердили гипотезу. Эта работа послужила началом ряда исследований различных классов органических соединений, которые позже были представлены Королевскому Обществу. Также Брэгг сделал предположение касательно структуры льда и на ежегодном приеме в Alpine Club представил модель, сделанную из мягкого воска, при помощи которой объяснил, почему при нагревании связи ослабевают.

Деятельность в Королевском Институте[]

Рождественские лекции[]

В 1919 году произошло на первый взгляд несущественно событие, которое тем не менее сильно повлияло на дальнейшую жизнь Брэгга — он прочитал Рождественские лекции («курс лекций, адаптированный для юношеской аудитории») в Королевском Институте. Курс назывался «Мир звуков». Прочитав его, Брэгг не только стал известен как хороший лектор, но также показал свои незаурядные качества, смог по-новому показать объект своих исследований. Шесть прочитанных им лекций носили названия «Что есть звук», «Звук и музыка», «Звуки в городе», «Звуки в стране», «Звуки в море», «Звуки на войне». Его умение объяснять на пальцах и влияние на молодых людей сделали его известным в широких кругах.

Чтение Рождественских лекций было одной из первых обязанностей Брэгга в Институте. Он назвал их в честь знаменитого стихотворения Лукреция — «О сущности вещей» и рассказывал на них об атомах, газах, жидкостях и кристаллической структуре, вкладывая в это занятие все мастерство и неповторимое очарование. Он всегда производил впечатление на юношескую аудиторию, для которой и предназначались эти лекции. Дважды, в 1925 и 1931 годах, он давал лекции «Старые ремесла и новые знания» и «Вселенная света». Первые лекции пролили свет на его собственный практический интерес в научных исследованиях, которые он позже выразил в речи «Промышленность и наука, произнесенной в Британской Ассоциации в Глазго в 1928 г.»

Занимаемые должности[]

Вероятно, благодаря успешному лекторскому опыту он был назначен читать лекции в 1923 году вместо ушедшего из жизни сэра Джеймса Девара. За тот период он был в должностях Fullerian Professor of Chemistry в Королевском Институте, директором лаборатории там же, суперинтендантом Дома, директором исследовательской лаборатории Деви-Фарадея. Fullerian Professor — это должность, занимающий которую не имеет четких обязанностей. Суперинтендант Дома отвечал целиком за обеспечение гладкой и беспроблемной деятельности Общества. Лаборатория Деви-Фарадея была основана доктором Людвигом Мондом. Таким образом, Брэгг руководил всей научной деятельностью Англии. Такой должности, конечно, не существовало, но было гораздо проще и удобнее иметь единую администрацию.

Примечания[]

  1. В 1913 г. вместе с сыном Уильямом Лоуренсом Брэгг применил дифракцию рентгеновских лучей в кристаллах к установлению их характеристик (длины волн характеристического излучения химических элементов) и к расшифровке структуры кристаллов.

Ссылки[]

См. также-Литература[]

Advertisement