Космология |
Изучаемые объекты и процессы |
Наблюдаемые процессы |
Теоретические изыскания |
Родственные темы |
Вселе́нная Фри́дмана (метрика Фридмана — Леметра — Робертсона — Уокера) — одна из космологических моделей, удовлетворяющих полевым уравнениям общей теории относительности (ОТО), первая из нестационарных моделей Вселенной. Получена Александром Фридманом в 1922. Модель Фридмана описывает однородную изотропную в общем случае нестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. Эта работа учёного стала первым основным теоретическим развитием ОТО после работ Эйнштейна 1915—1917 гг.
История открытия[]
Решение Фридмана было опубликовано в авторитетном физическом журнале Zeitschrift für Physik в 1922[1] и 1924 (для Вселенной с отрицательной кривизной)[2]. Решение Фридмана было вначале отрицательно воспринято Эйнштейном (который предполагал стационарность Вселенной и даже ввёл с целью обеспечения стационарности в полевые уравнения ОТО так называемый лямбда-член), однако затем он признал правоту Фридмана. Тем не менее, работы Фридмана (умершего в 1925) остались вначале незамеченными.
Нестационарность Вселенной была подтверждена открытием зависимости красного смещения галактик от расстояния (Эдвин Хаббл, 1929). Независимо от Фридмана, описываемую модель позднее разрабатывали Леметр (1927), Робертсон и Уокер (1935), поэтому решение полевых уравнений Эйнштейна, описывающее однородную изотропную Вселенную с постоянной кривизной, называют моделью Фридмана — Леметра — Робертсона — Уокера.
Эйнштейн не раз подтверждал, что начало теории расширяющейся Вселенной положил А. А. Фридман.
В творчестве А. А. Фридмана работы по теории относительности могли бы на первый взгляд показаться довольно внезапными. Ранее в основном он работал в области теоретической гидромеханики и динамической метеорологии.
Усвоение Фридманом ОТО было весьма интенсивным и в высшей степени плодотворным. Совместно с Фредериксом он взялся за капитальный труд «Основы теории относительности», в которой предполагалось изложить «достаточно строго с логической точки зрения» основы тензорного исчисления, многомерной геометрии, электродинамики, специального и общего принципа относительности.
Книга Фредерикса и Фридмана «Основы теории относительности» — это обстоятельное, подробное изложение теории относительности, основанное на весьма солидном математическом фундаменте геометрии общей линейной связности на многообразии произвольной размерности и теории групп. Исходной для авторов оказывается геометрия пространства-времени.
В 1923 г. была опубликована популярная книга Фридмана «Мир как пространство и время», посвящённая ОТО и ориентированная на довольно подготовленного читателя. В 1924 г. появилась статья Фридмана, рассматривавшая некоторые вырожденные случаи общей линейной связности, которые, в частности, обобщают перенос Вейля и, как считали авторы, «может быть, найдут применение в физике».
И, наконец, главным результатом работы Фридмана в области ОТО стала космологическая нестационарная модель, носящая теперь его имя.
По свидетельству В. А. Фока, в отношении Фридмана к теории относительности преобладал подход математика: «Фридман не раз говорил, что его дело — указать возможные решения уравнений Эйнштейна, а там пусть физики делают с этими решениями, что они хотят»[3].
Изначально, уравнения Фридмана использовали уравнения ОТО с нулевой космологической постоянной. И модели, основанные на них, безоговорочно доминировали (помимо короткого всплеска интереса к другим моделям в 1960-е гг.) вплоть до 1998 года[4]. В тот год вышли две работы, использовавшие в качестве индикаторов расстояния — сверхновые типа Ia. В них было убедительно показано, что на больших расстояниях закон Хаббла нарушается и Вселенная расширяется ускоренно, что требует наличия тёмной энергии, известные свойства которой соответствуют Λ-члену.
Современная модель, так называемая «модель ΛCDM», по прежнему является моделью Фридмана, но уже с учётом как космологической постоянной, так и тёмной материи.
Метрика Фридмана-Робертсона-Уокера[]
Вид символов Кристоффеля |
---|
Производные выражения от символов Кристоффеля |
Геометрия однородной изотропной Вселенной — это геометрия однородного и изотропного трёхмерного многообразия. Метрикой таких многообразий является метрика Фридмана-Робетсона-Уокера (FWT)[5]:
χ - так называемое сопустствующие расстояние или конформное, не зависящее от времени, t - время в единицах скорости света.
- Шаблон:Формулы
Или в тензорной записи:
- , где компоненты метрического тензора равны:
- ,
где пробегают значения 1…3, , а — временная координата.
Основные уравнения[]
Если же выражение для метрики подставить в уравнения ОТО для идеальной жидкости, то получим следующую систему уравнений:
- Уравнение энергии
- Уравнение движения
- Уравнение неразрывности
где Λ — космологическая постоянная, ρ — средняя плотность Вселенной, P — давление, с — скорость света.
Приведенная система уравнений допускает множество решений, в зависимости от выбранных параметров. На самом деле значение параметров фиксированы только на текущий момент и с течением времени эволюционируют, поэтому эволюцию расширения описывает совокупность решений.[5]
Объяснение закона Хаббла[]
Допустим есть источник, расположенный в сопутствующей системе на расстоянии r1 от наблюдателя. Приемная аппаратура наблюдателя регистрирует фазу приходящей волны. Рассмотрим два интервала между точками с одной и той же фазой[5]:
С другой стороны для световой волны в принятой метрике выполняется равенство:
Проинтегрировав это уравнение получим:
Учитывая что в сопутствующих координатах r не зависит от времени, и малость длины волны относительно радиуса кривизны Вселенной, получим соотношение:
Если теперь его подставить в первоначальное соотношение:
Разложим a(t) в ряд Тейлора с центром в точке a(t1) и учтем члены только первого порядка:
После приведения членов и домножения на c:
Соответственно, константа Хаббла:
Следствия[]
Определение кривизны пространства. Понятие критической плотности[]
Подставив в уравнение энергии выражение для постоянной Хаббла, приведем его к виду:
- ,
где
плотность вещества и темной энергии, отнесенная к критической, сама критическая плотность и вклад кривизны пространства соответственно. Если переписать уравнение следующим образом
- ,
то станет очевидно, что:
Эволюция плотности вещества. Уравнение состояния.[]
Стадия | Эволюция | Параметр Хаббла |
---|---|---|
Инфляционная | ||
Радиационное доминирование p=ρ/3 |
||
Пылевая стадия p=0 |
||
-доминирование p=-ρ |
Подставив в уравнение неразрывности уравнение состояния в виде
- (1)
Получим его решение:
Для разных случаев эта зависимость выглядит по-разному:
Случай холодного вещества (например пыль) p = 0
Случай горячего вещества (например излучение) p = ρ/3
Случай энергии вакуума p = -ρ
Благодаря этому, влиянием Ωk на ранних этапах можно пренебречь, т.е. считать Вселенную плоской (т.к. k=0. Одновременно, разная зависимость плотности компонентов от масштабного фактора позволяет выделить различные эпохи, когда расширение определяется только тем или иным компонентом, представленных в таблице.
Также стоить отметить, что если ввести некую квинтэссенция из плотностей темной энергии и плотность барионной и принять, что оно подчиняется выражению (1), то пограничным значением является
При превышении этого параметра расширение замедляется, при меньшем - ускоряется.
Динамика расширения[]
Λ < 0 Если значение космологической постоянной отрицательно, то действуют только силы притяжения и более никаких. Правая часть уравнения энергии будет неотрицательной только при конечных значениях R. Это означает, что при некотором значении Rc Вселенная начнет сжиматься при любом значении k и вне зависимости от вида уравнения состояния[8].
Λ = 0
В случае, если космологическая постоянная равна нулю, то эволюция при заданном значении H0 целиком и полностью зависит от начальной плотности вещества[5]:
Если , то расширение продолжается бесконечно долго, в пределе с асимптотически стремящейся к нулю скоростью. Если плотность больше критической, то расширение Вселенной тормозится и сменяется сжатием. Если меньше, то расширение идёт неограниченно долго с ненулевым пределом H.
Λ > 0
Если Λ>0 и k≤0, то Вселенная монотонно расширяется, но в отличие от случая с Λ=0 при больших значениях R скорость расширения растёт[8]:
При k=1 выделенным значением является . В этом случае существует такое значение R, при котором и , то есть Вселенная статична.
При Λ>Λc скорость расширения убывает до какого-то момента, а потом начинает неограниченно возрастать. Если Λ незначительно превышает Λc, то на протяжении некоторого времени скорость расширения остаётся практически неизменной.
В случае Λ<Λc всё зависит от начального значения R, с которого началось расширения. В зависимости от этого значения Вселенная либо будет расширяться до какого-то размера, а потом сожмется, либо будет неограниченно расширяться.
ΛCDM[]
Космологические параметры по данным WMAP и Planck | ||
---|---|---|
WMAP[9] | Planck[10] | |
Возраст Вселенной t0, млрд лет | 13,75±0,13 | 13,81±0,06 |
Постоянная Хаббла H0, (км/с)/Мпк | 71,0±2,5 | 67,4±1,4 |
Плотность барионной материи Ωbh2 | 0,0226±0,0006 | 0,0221±0,0003 |
Плотность тёмной материи Ωсh2 | 0,111±0,006 | 0,120±0,003 |
Общая плотность Ωt | 1,08+0,09-0,07 | 1,0±0,02 |
Плотность барионной материи Ωb | 0,045±0,003 | |
Плотность тёмной энергии ΩΛ | 0,73±0,03 | 0,69±0,02 |
Плотность тёмной материи Ωc | 0,22±0,03 |
ΛCDM — это современная модель расширения, являющаяся моделью Фридмана, включающая в себя помимо барионной материи, темную материю и темную энергию
Возраст Вселенной[]
Теоретическое описание[]
Время с начала расширения, называемая также возрастом Вселенной[11] определяется следующим образом:
- Шаблон:Формулы
Наблюдательные подтверждения сводятся к подтверждению самой модели расширения с одной стороны и предсказываемой ею моменты начала различных эпох, а с другой, чтоб возраст самых старых объектов не превышал получающийся из модели расширения возраст всей Вселенной.
Данные наблюдений[]
Не существует прямых измерений возраста Вселенной, все они измеряются косвенно. Все методы можно разделить на две категории[12]:
- Определение возраста на основе моделей эволюции у самых старых объектов: старых шаровых скоплений и белых карликов.
- В первом случае метод основан на факте, что звезды в шаровом скоплении все одного возраста, опираясь на теорию звёздной эволюции, строятся изохроны на диаграмме «цвет — звёздная величина», то есть кривые равного возраста для звёзд различной массы. Сопоставляя их с наблюдаемым распределением звёзд в скоплении, можно определить его возраст.
- Метод имеет ряд своих трудностей. Пытаясь их решить, разные команды, в разное время получали разные возраста для самых старых скоплений, от ~8 млрд лет[13], до ~ 25 млрд лет[14].
- Белые карлики имеют приблизительно одинаковую массу звёзд-предшественниц, а значит — и приблизительно одинаковую зависимость температуры от времени. Определив по спектру белого карлика его абсолютную звёздную величину на данный момент и зная зависимость время—светимость при остывании, можно определить возраст карлика[15]
- Однако данный подход связан как с большими техническими трудностями, — белые карлики крайне слабые объекты, — необходимо крайне чувствительные инструменты, чтоб их наблюдать. Первым и пока единственным телескопом, на котором возможно решение данной задачи является космический телескоп им. Хаббла. Возраст самого старого скопления по данным группы, работавшей с ним: млрд лет[15], однако, результат оспаривается. Оппоненты указывают, что не были учтены дополнительные источники ошибок, их оценка млрд лет[16].
- Ядерный метод. В его основе лежит тот факт, что разные изотопы имеют разный период полураспада. Определяя текущие концентрации различных изотопов у первичного вещества можно определить возраст элементов в нее входящих.
- Так у звезды CS31082-001, принадлежащей звёздному населению типа II, были обнаружены линии и измерены концентрации в атмосфере тория и урана. Эти два элемента имеют различный период полураспада, поэтому со временем их соотношение меняется, и если как-то оценить первоначальное соотношение обильностей, то можно определить возраст звезды. Оценить можно двояким способом: из теории r-процессов, подтверждённой как лабораторными измерениями, так и наблюдениями Солнца; или можно пересечь кривую изменения концентраций за счёт распада и кривую изменения содержания тория и урана в атмосферах молодых звёзд за счёт химической эволюции Галактики. Оба метода дали схожие результаты: 15,5±3,2[17] млрд лет получены первым способом, [18] млрд лет — вторым.
Виды расстояний.[]
Теоретическое описание[]
В космологии на больших расстояниях непосредственно измеряемых величин всего три - звездная величина, характеризующая блеск, угловой размер и красное смещение. Поэтому, для сравнения с наблюдениями вводятся две зависимости:
- Угловой размер от красного смещения, называемого угловым расстоянием:
- Блеск от красного смещения - называемого фотометрическим расстоянием:
Также в научно-популярной литературе можно встретить еще три вида расстояний: расстояние между объектами на текущей момент, расстояние между объектами на момент испускания принятого нами света и расстояние, которое прошел свет.
Данные наблюдений[]
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.
|
Для измерения фотометрического расстояния необходим источник известной светимости, так называемая стандартная свеча. Для космологических масштабов в качестве таковой берутся сверхновые типа Ia. Они возникают как следствие термоядерного взрыва белого карлика приблизившегося к пределу Чандрасекара.
Сфера Хаббла. Горизонт частиц. Горизонт событий[]
Также преимущественно в научно-популярной литературе используется термин "сфера Хаббла" - это сфера чей радиус равен расстоянию при котором скорость убегания равна скорости света.[19][20]
См. также[]
- Уравнение Фридмана
Примечания[]
- ↑ Friedmann, A: Über die Krümmung des Raumes (О кривизне пространства), Z. Phys. 10 (1922) 377—386.
- ↑ Friedmann, A: Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes (О возможности Вселенной с постоянной отрицательной кривизной пространства), Z. Phys. 21 (1924) 326—332.
- ↑ Фок В.А. (1963). "Работы А. А. Фридмана по теории тяготения Эйнштейна". УФН LXXX (3): 353–356. Retrieved on 2012-07-04.
- ↑ О непопулярности моделей с космологической постоянной красноречиво говорит тот факт, что Вайнберг в своей книге «Космология и гравитация» (на русском языке издана в 1975 году) параграф о моделях с космологической постоянной относит в раздел вместе с наивными моделями и моделями стационарной Вселенной, отводя на описание 4 страницы из 675.
- ↑ 5,0 5,1 5,2 5,3
- А.В. Засов.,К.А. Постнов. Общая Астрофизика. — Фрязино: Век 2, 2006. — С. 421-432. — 496 с. — ISBN 5-85099-169-7. (см. ISBN )
- Д.С. Горбунов, В.А. Рубаков. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва.. — Москва: ЛКИ, 2008. — С. 45-80. — 552 с. — ISBN 978-5-382-00657-4. (см. ISBN )
- Стивен Вайнберг. Космология. — Москва: УРСС, 2013. — С. 21-81. — 608 с. — ISBN 978-5-453-00040-1. (см. ISBN )
- ↑ Стивен Вайнберг. Космология. — Москва: УРСС, 2013. — С. 57-59. — 608 с. — ISBN 978-5-453-00040-1. (см. ISBN )
- ↑ Д.С. Горбунов, В.А. Рубаков. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва.. — Москва: ЛКИ, 2008. — С. 63. — 552 с. — ISBN 978-5-382-00657-4. (см. ISBN )
- ↑ 8,0 8,1 Майкл Роуэн-Робинсон. Космология = Cosmology / Перевод с английского Н.А. Зубченко. Под научной редакцией П.К. Силаева. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2008. — С. 96-102. — 256 с. — ISBN 976-5-93972-659-7. (см. ISBN )
- ↑ Jarosik, N., et.al. (WMAP Collaboration). Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results (PDF). nasa.gov. Проверено 4 декабря 2010. Архивировано из первоисточника 16 августа 2012. (from NASA’s WMAP Documents page)
- ↑ Planck Collaboration Planck 2013 results. XVI. Cosmological parameters.
- ↑ Астронет > Вселенная
- ↑ Donald D. Clayton. COSMOLOGY, COSMOCHRONOLOGY.
- ↑ Gratton Raffaele G., Fusi Pecci Flavio, Carretta Eugenio и др Ages of Globular Clusters from HIPPARCOS Parallaxes of Local Subdwarfs. — 1997.
- ↑ Peterson Charles J. Ages of globular clusters. — 1987.
- ↑ 15,0 15,1 Harvey B. Richer et al. Hubble Space Telescope Observations of White Dwarfs in the Globular Cluster M4. — 1995.
- ↑ Moehler S, Bono G. White Dwarfs in Globular Clusters. — 2008.
- ↑ Schatz Hendrik, Toenjes Ralf, Pfeiffer Bernd Thorium and Uranium Chronometers Applied to CS 31082-001. — 2002.
- ↑ N. Dauphas URANIUM-THORIUM COSMOCHRONOLOGY. — 2005.
- ↑ Сергей Попов. Сверхсветовое разбегание галактик и горизонты Вселенной: путаница в тонкостях.
- ↑ TM Davis & CH Linewater Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe. — 2003.
Ссылки[]
- Страница 0 - краткая статья
- Страница 1 - энциклопедическая статья
- Разное - на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Вселенная Фридмана 1», чтобы сохранить ее