Наука
Advertisement

Ге́лиевая вспы́шка — взрывоподобное начало горения гелия в тройном альфа-процессе (см. ниже) в вырожденных ядрах маломассивных (масса до ~2,25 солнечных) красных гигантов.

Degenetate.Gas.Pressure.vs.Temperature

Зависимость давления вырожденного газа от температуры: гелиевая вспышка развивается на горизонтальном участке

При эволюции звёзд главной последовательности происходит выгорание водорода в недрах звезды, при этом образуется достаточно плотное гелиевое ядро, в котором уже не идут термоядерные реакции, равновесие, поддерживавшееся их энерговыделением нарушается и ядро начинает сжиматься. При достижении достаточной плотности происходит вырождение газа электронов плазмы ядра и ядро перестаёт сжиматься.

Особенностью вырожденного газа является крайне слабая зависимость давления от температуры: в нерелятивистском случае давление , и так как такое ядро окружено слоем водорода, в котором идёт его горение, температура ядра начинает повышаться практически без изменения плотности, пока не будут достигнуты сочетание температуры (~108 К) и плотности (~106 г/см3) для начала тройной гелиевой реакции:

He4 + He4 = Be8

Be8 + He4 = C12 + 7,3 МэВ.

Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока, так, для диапазона температур ~(1—2)·108 K энерговыделение  :

где  — парциальная концентрация гелия в ядре (в рассматриваемом случае «выгорания» водорода близка к единице).

Файл:HR-Diagram.Helium.Flash.jpg

Эволюционный трек звезды при гелиевой вспышке на диаграмме Герцшпрунга-Рассела.

При отсутствии вырождения повышение температуры привело бы к расширению ядра, снижению плотности и равновесной скорости термоядерной реакции, однако из-за вырождения температура растёт при почти постоянной плотности, что приводит к постоянному росту энерговыделения тройной гелиевой реакции в ядре — до тех пор, пока температура не возрастает до снятия вырождения при данной плотности.

Гелиевая вспышка развивается в течение единиц минут и светимость ядра в пике вспышки достигает 1010 солнечных. После снятия вырождения ядро быстро расширяется, и звезда на некоторое время (~104—105 лет) резко увеличивает свою светимость.

Ядерные процессы
Радиоактивный распад
  • Альфа-распад
  • Бета-распад
  • Кластерный распад
  • Двойной бета-распад
  • Электронный захват
  • Двойной электронный захват
  • Гамма-излучение
  • Внутренняя конверсия
  • Изомерный переход
  • Нейтронный распад
  • Позитронный распад
  • Протонный распад
  • Спонтанное деление

Нуклеосинтез


См. также[]


en:Helium flash

Advertisement