Наука
Advertisement

https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F


NewtonsLawOfUniversalGravitation

Гравитационная постоянная G лежит в основе закона всемирного тяготения.

Гравитацио́нная постоя́нная, постоянная Ньютона (обозначается обычно G, иногда GN или γ)[1]фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами[2] m1 и m2, находящимися на расстоянии r, равна:

Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2008 год значение было

G = 6,67428(67)·10−11 м3·с−2·кг−1, или Н·м²·кг−2,

в 2010 году значение было исправлено на:

G = 6,67384(80)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.

В 2014 году значение гравитационной постоянной, рекомендованное CODATA, стало равным[3]:

G = 6,67408(31)·10−11 м3·с−2·кг−1, или Н·м²·кг−2.

В октябре 2010 в журнале Physical Review Letters появилась статья[4], предлагающая уточнённое значение 6,67234(14), что на три стандартных отклонения меньше величины G, рекомендованной в 2008 г. Комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г. Пересмотр величины G, произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах[5]. Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

История измерения[]

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат[6] был уже достаточно близок к современному.

В 2000 г. было получено значение гравитационной постоянной см3 г−1 c−2, с погрешностью 0,0014%[7].

В 2013 г. значение гравитационной постоянной было получено группой ученых, работавших под эгидой Международного Бюро Мер и Весов, и оно составляет см3 г−1 c−2 (точность 27 ppm)[8]. В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено.[9][10]

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по его уточнению продолжают различаться[11]. В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени — неизменность гравитационной постоянной проверена с точностью до , но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов[11].

По астрономическим данным постоянная G практически не изменялась за последние сотни миллионов лет, её относительное изменение не превышает 10−11 — 10−12 в год.[12][13][14]

Измерение с помощью атомной интерферометрии[]

В июне 2014 года в журнале Nature появилась статья итальянских и нидерландских физиков, где были представлены новые результаты измерения G, сделанные при помощи атомных интерферометров[15]. По их результатам

G = 6.67191(99) × 10−11 м3·с−2·кг−1 с погрешностью 0,015%.

Авторы указывают, что поскольку эксперимент с применением атомных интерферометров основан на принципиально других подходах, он помогает выявить некоторые систематические ошибки, не учитывающиеся в других экспериментах.

См. также[]

  • Постоянная Гаусса

Примечания[]

  1. В общей теории относительности обозначения, использующие букву G, применяются редко, поскольку там эта буква обычно используется для обозначения тензора Эйнштейна.
  2. По определению массы, входящие в это уравнение, — гравитационные массы, однако расхождения между величиной гравитационной и инертной массы какого-либо тела до сих пор не обнаружено экспериментально. Теоретически в рамках современных представлений они вряд ли отличаются. Это в целом было стандартным предположением и со времен Ньютона.
  3. CODATA Internationally recommended values of the Fundamental Physical Constants (англ.). Проверено 30 июня 2015.
  4. Phys. Rev. Lett. 105 110801 (2010) в ArXiv.org
  5. Новости физики за октябрь 2010
  6. Разные авторы указывают разный результат, от 6,754×10−11 м²/кг² до (6.6 ± 0.04)×10−11м³/(кг·с³) — см. Эксперимент Кавендиша#Вычисленное значение.
  7. Ю.Н. Ерошенко Новости физики в сети Internet (по материалам электронных препринтов), УФН, 2000 г., т. 170, № 6, с. 680
  8. Improved Determination of G Using Two Methods // Physical Review Letters, 111, 101102 (публикация от 5 сентября 2013), DOI:10.1103/PhysRevLett.111.101102
  9. Так ли постоянна гравитационная постоянная? Новости науки на портале cnews.ru // публикация от 26.09.2002
  10. Brooks, Michael Can Earth's magnetic field sway gravity?. NewScientist (21 September 2002). [[[:Шаблон:Wayback]] Архивировано из первоисточника 8 февраля 2011].
  11. 11,0 11,1 Игорь Иванов. Новые измерения гравитационной постоянной ещё сильнее запутывают ситуацию (13 сентября 2013). Проверено 14 сентября 2013.
  12. van Flandern, T. C., Is the Gravitational Constant Changing // Astrophysical Journal, Vol.248, P. 813, 1981, BCode 1981ApJ…248..813V, doi:10.1086/159205: results indicate that G'/G = (-6.4±2.2)x 10−11 yr−1
  13. J. P. W. Verbiest et al., Precision Timing of PSR J0437-4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton’s Gravitational Constant // The astrophysical journal, 2008, Volume 679 Number 1, doi:10.1086/529576: «limit on the variation of Newton’s gravitational constant, |Ġ/G| ≤ 23 × 10−12 yr−1
  14. Взрыв звезд доказал неизменность Ньютоновской гравитации в космическом времени
  15. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms (18 June 2014).

Ссылки[]


  1. Википедия Гравитационная постоянная адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Гравитационная постоянная и найти в:

  1. Вокруг света постоянная адрес
  2. Академик постоянная/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы постоянная+&search адрес
  5. Научная Россия постоянная&mode=2&sort=2 адрес
  6. Кругосвет постоянная&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниепостоянная адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Гравитационная постоянная 1», чтобы сохранить ее

Комментарии читателей:[]

Advertisement