Наука
Наука
Advertisement

https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D0%BD%D0%B3%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%BE%D1%81%D1%82%D1%8C


 Просмотр этого шаблона  Общая теория относительности
Гравитация
Математическая формулировка
Космология
См. также: Портал:Физика

Гравитацио́нная сингуля́рность (иногда сингулярность пространства-времени) — точка (или подмножество) в пространстве-времени, через которую невозможно гладко продолжить входящую в неё геодезическую линию. В таких областях становится неприменимым базовое приближение большинства физических теорий, в которых пространство-время рассматривается как гладкое многообразие без края. Часто в гравитационной сингулярности величины, описывающие гравитационное поле, становятся бесконечными или неопределёнными. К таким величинам относятся, например, скалярная кривизна или плотность энергии в сопутствующей системе отсчёта.

В рамках классической общей теории относительности сингулярности обязательно возникают при формировании чёрных дыр под горизонтом событий, в таком случае они ненаблюдаемы извне. В некоторых случаях сингулярности могут быть видны внешнему наблюдателю — так называемые голые сингулярности, например космологическая сингулярность в теории Большого взрыва.

С математической точки зрения гравитационная сингулярность является множеством особых точек решения уравнений Эйнштейна. Однако при этом необходимо строго отличать так называемую «координатную сингулярность» от истинной гравитационной. Координатные сингулярности возникают тогда, когда принятые для решения уравнений Эйнштейна координатные условия оказываются неудачными, так что, например, сами принятые координаты становятся многозначными (координатные линии пересекаются) или наоборот, не покрывают всего многообразия (координатные линии расходятся и между ними оказываются не покрываемые ими «клинья»). Такие сингулярности могут быть устранены принятием других координатных условий, то есть преобразованием координат. Примером координатной сингулярности служит сфера Шварцшильда в пространстве-времени Шварцшильда в шварцшильдовских координатах, где компоненты метрического тензора обращаются в бесконечность. Истинные гравитационные сингулярности никакими преобразованиями координат устранить нельзя, и примером такой сингулярности служит многообразие в том же решении.

Сингулярности не наблюдаются непосредственно и являются, при нынешнем уровне развития физики, лишь теоретическим построением. Считается, что описание пространства-времени вблизи сингулярности должна давать квантовая гравитация.

См. также[]

Литература[]

На русском языке[]

  • Герок Р. Сингулярности в общей теории относительности // Квантовая гравитация и топология: Сборник статей / Перевод с англ. Б. Я. Фролова под ред. Д. Иваненко. — М.: Мир, 1973. — С. 27—65. — 216 с. — (Новости фундаментальной физики, вып. 2). (см. ISBN )

    • Репринтное переиздание
      Хокинг С., Эллис Дж. Крупномасштабная структура пространства-времени. — ИО НФМИ, 1998. — 431 с. — (Шедевры мировой физико-математической литературы). — ISBN 5-80323-192-4. (см. ISBN )

На английском языке[]

Ссылки[]


  1. Википедия Гравитационная сингулярность адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Гравитационная сингулярность и найти в:

  1. Вокруг света сингулярность адрес
  2. Академик сингулярность/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы сингулярность+&search адрес
  5. Научная Россия сингулярность&mode=2&sort=2 адрес
  6. Кругосвет сингулярность&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниесингулярность адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Гравитационная сингулярность 1», чтобы сохранить ее

Комментарии читателей:[]

Advertisement