Дифференциальными кольцами, полями и алгебрами называются кольца, поля и алгебры, снабжённые дифференцированием — унарной операцией, удовлетворяющей правилу произведения. Естественный пример дифференциального поля — поле рациональных функций одной комплексной переменной , операции дифференцирования соответствует дифференцирование по . https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0
- Buium Differential Algebra and Diophantine Geometry, — Hermann (1994).
- И. Капланский Дифференциальная алгебра, — Hermann (1957).
- Е. Колчин Дифференциальная алгебра и алгебраические группы, — 1973.
- Д. Маркер Теория моделей для дифференциальных полей, Теория моделей полей, Lecture notes in Logic 5, D. Marker, M. Messmer and A. Pillay, Springer Verlang (1996).
- А. Магид Лекции по дифференциальной теории Галуа, — Американское мат. общество, 1994.
- Домашняя страница Давида Маркера содержит несколько статей о дифференциальных полях.
- Страница 0 - краткая статья
- Страница 1 - энциклопедическая статья
- Разное - на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Дифференциальная алгебра 1», чтобы сохранить ее