Наука
Advertisement
Capacitor schematic with dielectric

Поляризованный диэлектрический материал

Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток. Плотность свободных носителей заряда в диэлектрике не превышает 108 шт/см³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле.

Диэлектрический материал как электрический изолятор может быть поляризован с помощью приложенного электрического поля. Если диэлектрик поместить в электрическое поле, электрические заряды не проходят через материал, но стоит только немного сместить заряды от их средних положений равновесия вызывается диэлектрическая поляризация. Из-за диэлектрической поляризации, положительные заряды смещаются в направлении поля, а отрицательные заряды имеют сдвиг в противоположном направлении. Это создает внутреннее электрическое поле, которое снижает обще поле внутри диэлектрика.[1] Если диэлектрик состоит из слабо связанных молекул, эти молекулы не только становятся поляризованными, а также переориентируются так, что их оси симметрии выравнивают поля.[2]

Исследование диэлектрических свойств касается хранения и диссипации электрической и магнитной энергии в материалы.[3] Диэлектрики имеют важное значение для объяснения различных явлений в электронике, оптике и физике твердого тела.

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

Диэлектрики используются не только как изоляционные материалы.

Ряд диэлектриков проявляют интересные физические свойства.

К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики. При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов. Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материал используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость. Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др. Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10-5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10-8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10-5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбужденным. Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов. Совокупность научно-технических знаний о физико-химической природе, методах исследования и изготовления различных материалов составляет основу материаловедения, ведущая роль которого в настоящее время широко признана во многих областях техники и промышленности. Успехи материаловедения позволили перейти от использования уже известных к целенаправленному созданию новых материалов с заранее заданными свойствами.

Диэлектрическая поляризация[]

Основы атомной модели[]

Dielectric model

Электрическое поле взаимодействия с атомом в классической модели диэлектрической проницаемости.

Классический подход к диэлектрической модели, материала состоит из атомов. Каждый атом состоит из облака отрицательного заряда (электронов), привязанных к и окружающим положительный точечный заряд облаком отрицательного заряда (электронами) в центре. В присутствии электрического поля заряда облако искажается, как показано в правой верхней части фигуры.

Это может быть сведен к простой диполи [1] , используя принцип суперпозиции [2]. Диполь характеризуется дипольным моментом [3], векторная величина, показанная на рисунке синяя стрелка с надписью M. Это связь между электрическим полем и дипольным моментом, что порождает поведение диэлектрика. (Обратите внимание, что дипольный момент пунктов в том же направлении, что и электрическое поле на рисунке. Это не всегда так, и это сильное упрощение, но это справедливо для многих материалов.)

Когда электрическое поле удаляется атом возвращается в исходное состояние. Время, необходимое для этого является так называемая релаксация [4] времени; экспоненциального распада.

В этом и заключается суть модели в физике. Поведение диэлектрическое теперь зависит от ситуации. Чем сложнее ситуация, тем богаче модель должна быть точно описана поведением. Важные вопросы:

  • Создается электрическое поле, постоянное или оно меняется со временем? По какой ставке?
  • Не ответ зависит от направления приложенного поля (изотропность [5] материала)?
  • Ответ везде одинаковый (однородность материала)?
  • Делать каких-либо границ или интерфейсы должны быть учтены?
  • Это отклик линейноcти систем [6] относительно поля, или есть нелинейности [7] систем ?

Связь между электрическим полем E и дипольным моментом M порождает поведение диэлектрической проницаемости, которая для данного материала, может быть охарактеризована функцией F и определяется уравнением:

.

Когда оба типа электрического поля и тип материала были определены, затем выбирается одна простейшая функция F , которая правильно предсказывает явления интересов. Примеры явлений, которые так можно смоделировать включают в себя:

Дипольная поляризация[]

Ионная поляризация[]

[8]

См. также[]

Примечания[]

  1. Quote from Encyclopædia Britannica: "Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material."
  2. Quote from Encyclopædia Britannica: "Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material."
  3. Arthur R. von Hippel, in his seminal work, Dielectric Materials and Applications, stated: "Dielectrics... are not a narrow class of so-called insulators, but the broad expanse of nonmetals considered from the standpoint of their interaction with electric, magnetic, or electromagnetic fields. Thus we are concerned with gases as well as with liquids and solids, and with the storage of electric and magnetic energy as well as its dissipation." (Technology Press of MIT and John Wiley, NY, 1954).
Advertisement