Наука
Advertisement

https://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BF%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D1%8B_%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D1%8B_%D0%BE%D1%80%D0%B1%D0%B8%D1%82%D1%8B


Введение[]

Orbit ru

Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1)

Elipse

Части эллипса (рис.2)

Кеплеровы элементы — шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел:

  • большая полуось (),
  • эксцентриситет (),
  • наклонение (),
  • аргумент перицентра (),
  • долгота восходящего узла (),
  • средняя аномалия ().

Первые два определяют форму орбиты, третий, четвёртый и пятый — ориентацию по отношению к базовой системе координат, шестой — положение тела на орбите.

Большая полуось[]

Большая полуось — это половина главной оси эллипса (обозначена на рис.2 как ). В астрономии характеризует среднее расстояние небесного тела от фокуса

Эксцентриситет[]

Эксцентрисите́т (обозначается «» или «ε») — числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.[1] Эксцентриситет характеризует «сжатость» орбиты. Он выражается по формуле:

, где — малая полуось (см. рис.2)

Можно разделить внешний вид орбиты на пять групп:

  • окружность
  • эллипс
  • парабола
  • гипербола
  • прямая (вырожденный случай)

Наклонение[]

Inclination in Elliptical Orbit

A — Объект
B — Центральный объект
C — Плоскость отсчёта
D — Плоскость орбиты
i — Наклонение

Наклонение орбиты (накло́н орбиты, накло́нность орбиты, наклоне́ние) небесного тела — это угол между плоскостью его орбиты и плоскостью отсчёта (базовой плоскостью).

Обычно обозначается буквой i (от англ. inclination). Наклонение измеряется в угловых градусах, минутах и секундах.

Если °, то движение небесного тела называется прямым[2].
Если °°, то движение небесного тела называется обратным.
  • В применении к Солнечной системе, за плоскость отсчёта обычно выбирают плоскость орбиты Земли (плоскость эклиптики). Орбиты других планет Солнечной системы и Луны отклоняются от орбиты Земли лишь на несколько градусов.
  • Для искусственных спутников Земли за плоскость отсчёта обычно выбирают плоскость экватора Земли.
  • Для спутников других планет Солнечной системы за плоскость отсчёта обычно выбирают плоскость экватора соответствующей планеты.
  • Для экзопланет и двойных звёзд за плоскость отсчёта принимают картинную плоскость.

Аргумент перицентра[]

Аргуме́нт перице́нтра — определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0° - 360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.

При исследовании экзопланет и двойных звёзд в качестве базовой используют картинную плоскость — плоскость, проходящую через звезду и перпендикулярную лучу наблюдения звезды с Земли. Орбита экзопланеты, в общем случае случайным образом ориентированная относительно наблюдателя, пересекает эту плоскость в двух точках. Точка, где планета пересекает картинную плоскость, приближаясь к наблюдателю, считается восходящим узлом орбиты, а точка, где планета пересекает картинную плоскость, удаляясь от наблюдателя, считается нисходящим узлом. В этом случае аргумент перицентра отсчитывается из притягивающего центра против часовой стрелки.

Обозначается ().

Долгота восходящего узла[]

Долгота́ восходя́щего узла́ — один из основных элементов орбиты, используемых для математического описания формы орбиты и её ориентации в пространстве. Определяет точку, в которой орбита пересекает основную плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, основная плоскость — эклиптика, а нулевая точка — Первая точка Овна (точка весеннего равноденствия).

Обозначается ☊ или Ω.

Средняя аномалия[]

Kepler's equation scheme

Аномалии (рис.3)

Средняя аномалия для тела, движущегося по невозмущённой орбите — произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению.

Обозначается буквой (от англ. mean anomaly)

В звёздной динамике средняя аномалия вычисляется по следующим формулам:

где:

  • — средняя аномалия на эпоху ,
  • — начальная эпоха,
  • — эпоха, на которую производятся вычисления, и
  • среднее движение.

Либо через уравнение Кеплера:

где:

  • — это эксцентрическая аномалия ( на рис.3),
  • — это эксцентриситет.

Вычисление кеплеровых элементов[]

Рассмотрим следующую задачу: пусть имеется невозмущённое движение и известны вектор положения и вектор скорости на момент времени . Найдём кеплеровы элементы орбиты.

Прежде всего, вычислим большую полуось:

По интегралу энергии:

(1) , где k — гравитационный параметр равный произведению гравитационной постоянной на массу небесного тела, для Земли K = 3,986005×105 км³/c², для Солнца K = 1,32712438×1011 км³/c².

Следовательно, по формуле (1) находим .

Страница: 0

en: Kepler orbit

de: [1]

Примечания[]

  1. А. В. Акопян, А. А. Заславский Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
  2. То есть, объект движется вокруг Солнца в том же направлении, что и Земля

См. также[]

Ссылки[]

Литература[]


  1. Википедия Кеплеровы элементы орбиты адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Кеплеровы элементы орбиты и найти в:

  1. Вокруг света элементы орбиты адрес
  2. Академик элементы орбиты/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы элементы орбиты+&search адрес
  5. Научная Россия элементы орбиты&mode=2&sort=2 адрес
  6. Кругосвет элементы орбиты&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниеэлементы орбиты адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Кеплеровы элементы орбиты 1», чтобы сохранить ее

Комментарии читателей:[]


Для статьи[]

Advertisement