Наука
Red White Blood cells

Клетки крови: эритроцит и лейкоцит

ADN animation

Двойная спираль ДНК

Микроскопия (лат. μΙκροσ — мелкий, маленький и др.-греч. μΙκροσ σκοποσ — вижу) — способ изучения малых объектов с помощью микроскопа. Микроскопия позволяет получить изображения тонкой структуры объектов (качество зависит от разрешающей способности микроскопа).

Микроскопия как метод исследования в отличие от других методик постоянно развивается в зависимости от технических достижениий в области точной механики и оптики, от разработок более совершенных, с более высокой разрешающей способностью самих микроскопов, дающие возможность открыть новые материалы, применить новые методы исследований и т.д. Например, создание в 1847 году Карлом Цейссом первого опытного однолинзового образца микроскопа открыло эпоху разработок новых микроскопов, и вслед за этим - новых способов микроскопии, или применение атомно-силового микроскопа в нанотехнологии даёт возможность глубже проникнуть в микромир, управлять атомами и молекулами, что в свою очередь порождает новые методы и технологии дальнейших исследований, ведёт к созданию новых материалов, устройств и т.д.

История[]

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном. [1] Современные микроскопы отличаются высокой степенью специализации. Существуют металлографические, биологические, полярографические, а также универсальные микроскопы, общего назначения.

Виды микроскопии[]

Staphylococcus aureus 01

Микрофотография бактерий - Стафилококк золотистый

Phase microscopy

Фазовая микрофотография

Существует несколько видов микроскопии: оптическая микроскопия, электронная микроскопия, рентгеновская микроскопия (рентгеновская лазерная микроскопия), отличающиеся конструктивными элементами, деталями, узлами самих микроскопов, что обеспечивает наблюдение в разных диапазонах спектра электромагнитных лучей.

Возможности микроскопии как метода изучения и фотографирования малых объектов зависят от разрешающей способности, применения новых технологий оптических систем, стереоскопии, методов подготовки объекта (срезы, окрашивание препаратов, использование метода тёмного- и светлого поля, поляризованного света и т.д.). Новые микроскопы расширяют возможности исследований в таких областях наук, как биологии, медицине, металловедении, минералогии, космосе и др..

Микроскопия в зависимости от микроскопов разделяется как:

  • Оптическая микроскопия
    • Наноскопия
  • Рентгеновская микроскопия
  • Электронная микроскопия
  • Сканирующая зондовая микроскопия
    • Сканирующая туннельная микроскопия
    • Ближнепольная оптическая микроскопия

Виды микроскопов[]

Для исследования объектов разного типа, и в зависимости от требуемой величины оптического разрешения и других требований, созданы разные микроскопы:

Разрешающая способность[]

Получение изображений осуществляется путём использования соответствующих оптических системМикроскопов. Степень прониковения в микромир, изучения микромира зависит от возможности рассмотреть величину микрообъектов, от разрешающей способности прибора , определяемой длиной волны используемого в микроскопии опорного излучения (свет, УФ, ИК, рентгеновское излучение). Главным ограничением возможности рассматривать более мелкие частицы — это когда достигнут предел возможности применить длину опорной (например,размер площади) волны излучения (освещения) объекта меньше его (т.е. внутри его границ). Например, наш глаз спослбен рассмотреть размер пятен изображения или две риски в пределах 0,176мм c расстояния 250мм. Уменьшение размероав пятен или расстояний между рисками мы воспринимаем как сплошное любое цветное или чёрно-белое (серое) изображение без видимых деталей. Т.е. «проникнуть глубже» в микромир возможно при применении более коротковолновых излучений, т.е. излучений с меньшими длинами волн, соответственно с более высокой разрешающей способностью микроскопов. В настоящее время достигнут предел разрешающей способности микроскопа или микроскопии, равный длине опорной волны луча «жёсткого» рентгеновского излучения, что соответстыет длинам волн 1—10нм (10−9—10−8м).[2]

Оптическая микроскопия[]

Olympus SZIII stereo microscope

Бинокулярный стереомикроскоп

Человеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешения составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены оптичские микроскопы различных типов.

Немецкие ученые Штефан Хелль в 2006 году Stefan Hell и Мариано Босси Mariano Bossi из Института биофизической химии разработали микроскоп под названием Флюоресцентный наноскоп с разрешением в 1-10 нм и получать высококачественные трехмерные 3D изображения. Вся суть заклюсается в том, что здесь впервые применён принцип комбинированой микроскопии, когда опорное освещение по принципу лазерной рентгеноскопии позволяет получить оптическое изображение с выходными длинами волн оптического микроскопа, но обеспечивать разрешение микроскопии в диапазоне 1-10 нм.

Электронная микроскопия[]

Elektronen mikroskop

Электронный микроскоп

С изобретением электронного микроскопа — 1930-е годы — начало создания современной науки об исследовании и изучении микромира под названием микрография или микроскопия.

Рентгеновская микроскопия[]

История рентгеновской микроскопии[]

До создания рентгеновских микроскопов работали с оптическими приборами, использующих лучи видимого света, так как и глаз работает в оптическом диапазоне длин волн. Соответственно, оптические микроскопы не могли иметь разрешения менее полупериода волны опорного излучения (для видимого диапазона длина волн 0,4—0,7 мкм, или 400—700 нм) c возможным максимальным увеличением в 2000 раз.[3]

Идея просвечивающего электронного микроскопа состояла в замене опорного электромагнитного излучения на электронный пучок. Известно, что для увеличения разрешения микроскопов, использующих Электромагнитное излучение, необходимо уменьшение длины волны электромагнитного излучения до ультрафиолетового диапазон вплоть до рентгеновского (длина волны сопоставима с межатомными расстояниями в веществе) и основная трудность состоит в фокусировке ультрафиолетовых и, тем более, рентгеновских лучей. Последние вообще не поддаются фокусировке.

Особенность взаимодействия рентгеновских лучей с веществом отличает рентгеновские оптические системы от оптических систем для световых и электронных лучей. (Малое отклонение коэффициента преломления рентгеновских лучей от единицы (меньше чем на 10-4) практически не позволяет использовать для их фокусировки линзы и призмы. Электрические и магнитные линзы для этой цели также неприменимы, так как рентгеновские лучи инертны к электрическому и магнитному полям. Поэтому в микроскопии рентгеновской для фокусировки рентгеновских лучей используют явление их полного внешнего отражения изогнутыми зеркальными плоскостями или отражение от кристаллографических изогнутых плоскостей)[4]. На этом принципе построены отражательные рентгеновские микроскопы.

Возможности рентгеновской микроскопии[]

Black fly

Голова мухи (фото сделано с помощью электронного микроскопа)

Разрешающая способность методов рентгеновской микроскопии практически достигает 100 нм, что в 2 раза выше, чем у оптических микроскопов (200нм). Теоретически рентгеновская микроскопия позволяет достичь на 2 порядка лучшего разрешения, чем оптическая (поскольку длина волны рентгеновского излучения меньше на 2 порядка). Однако современный оптический микроскоп - наноскоп имеет разрешение до 3-10 нм.

Проекционные рентгеновские микроскопы[]

Schema proekzionnnogo rentgenovskogo mikroskopa

Схема Рентгеновского микроскопа проекционного

Проекционные рентгеновские микроскопы представляют собой камеру, в противоположных концах которой располагаются источник излучения и регистрирующее устройство. Для получения чёткого изображения необходимо, чтобы угловая апертура источника была как можно меньше.

Увеличение (М) в методе рентгеновской проекционной микроскопии определяется отношением расстояний от источника рентгеновского излучения до детектора (b) к расстоянию от источника до объекта (а):

М = b/a

В микроскопах такого типа до недавнего времени не использовались дополнительные оптические приборы. Основным способом получить максимальное увеличение является размещение объекта на минимально возможном расстоянии от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки. В последнее время ведутся разработки микроскопов, использующих зонные пластинки Френеля для фокусировки изображения. Такие микроскопы имеют разрешающую способность до 30 нанометров.

Новое направление в рентгеноскопии[]

Рентгеновская оптика преломления[]

Linsa X-prelomlayustschay

Планарные параболические линзы

В настоящее время на основе оптических материалов монокристаллического кремния исследованы и созданы линзы и призмы, преломляющие Х-лучи. Это аналоги оптических устройств (тонких линз), используемых в диапазоне видимых лучей света. До последнего времени считались невозможными использовать преломляющие системы для рентгеновского излучения.

Как известно, показатель преломления Х-лучей мало отличается от единицы. Рентгеновская оптика являлась предметом постоянных оценок и рассуждений. Получение и появление составных рентгеновских линз и призм — начало новых шагов во всём мире в деле создания новых оптических устойств микроскопов, телескопов с использованием диапазона спектра длин волн жёстких Х-лучей, способных их преломлять и фокусировать с разрешением 5-10нм[5]

Получение изображений в реальном и фурье-пространствах[]

Mikroscopiya

Рис.1,Применение планарных линз на примере прохождения Х-лучей в кристаллах

X-linsa v fluoreszentnom nanoscope

Рис.2,Cхема флюоресцентного наноскопа с использованием Х-линзы, преломляющей Х-лучи

Фокусирующие элементы могут передавать рентгеновские изображения в реальном (видимом) пространстве объектов в виде стереоизображений 3D. В данном случае важно при создании методов рентгеноскопии, когда пространственное разрешение фиксируется предельным разрешением сфокусированного объекта на субмикронном атомно-молекулярном уровне. Эти методы уже с 1980 годов реализованы, но в диапазоне «мягких» Х-волн при использовании зонных пластинок Френеля и рентгеновской зеркалной оптикой. В данном случае, например, получают двумерные рентгеновские изображения при использовании мягких Х-лучей с энергией 1-1,5кэВ, где глубина поглощения менее 1мкм, что не на много больше разрешения, т.е. 20-100нм.

В диапазоне жёсткого излучения (мощностью от 6-10 до 100кэВ), где работают преломляющие линзы (Рис.1, Рис.2), глубина поглощения достигает величин больших значенийй разрешения самих линз. Кроме того надо учесть, что преломляющие Х-линзы, дающие субмикронное фокальное пятно, имеют глубину резкости примерно 0,1—1см. И любое двумерное их оптическое изображение есть проекционное с деталями, которыые накладываются по ходу луча. Откуда, наиболее целесообразнее получить объективную оценку, применив способы томографии, компьютерной томографии, магнитно-резонансной томографии.[6], получая изображение в трёхмерном пространстве (3D).

Для получения рентгеновских изображений в действительном пространстве сейчас в основном применяют преломляющие линзы, рассмотренные выше (Рис.1,2), с параболическим аксиально симметричным профилем.[7] Имеются и другие Х-линзы с другими рассчётными профилями. В настоящее время опережающее развитие получает безлинзовая компьютерная микроскопия в томографии, где происходит форимрование трёхмерных изображенй структуры объектов (3D). Сейчас созданы нанотомографы с разрешением 200нм.[8] Для повышения разрешения трехмерных изображений величиной в 25-50нм предполагается применение в топографии методов преобразований сигналов изображений нанообъектов — спектров дифракции в фурье-пространстве (с последующими преобразованиями сигналов — дискретизациия, калибровка, восстановление их при АЦП и т.д. с выдачей в стерео пространстве изображений на экране монитора). Флюоресцентная рентгеноскопия с разрешением 5-10нм отличается тем, что в разных участках объекта периодически создаются видимые раздельно флуоресцирующие молекулы и наночастицы. Лазер (рентгеновский) обеспечивает такое их возбуждение, которое достаточно не только для регистрации их неперекрывающихся изображений, но и для обесцвечивания уже зарегистрированных флуоресцирующих молекул. При этом десятки тысяч кадров с зарегистрированными изображениями одиночных молекул и наночастиц (в виде пятен диаметром порядка длины волны света флуоресцении, умноженной на увеличение микроскопа), обрабатываются на компьютере для поиска координат центров пятен и создания изображения объекта по миллионам вычисленных координат центров пятен, соответствующих координатам индивидуальных флуоресцирующих молекул и наночастиц. При этом применяемые две цифровые, размещённые под углом, с высоким разрешением камеры, улавливая светящиеся окрашенные в RGB цвета микрочастицы (молекулы, атомы) при формировании стереоизображений окрашивают их в нужный цвет. [9]

Лазерная рентгеновская микроскопия[]

См. Лазерный рентгеновский микроскоп


Примечания[]

  1. http://www.gallery-st.com/texts/mantis.doc
  2. http://www.lenta.ru/news/2007/08/13/nanoscope/
  3. http://materiology.info/ref/opti2eskogo_mikroskopa.html
  4. http://cultinfo.ru/fulltext/1/001/008/096/514.htm
  5. В.В.Аристов, Л.Г.Шабельников Успехи физических наук, январь 2008г.,Том178, №1
  6. Тихонов А Н, Арсенин В Я, Тимонов А АМатематические задачи компютерной томографии (М.:Наука,1987)
  7. Langeler B et al.J. Sinchrotron Rad. 9 119 (2002)
  8. SKYSCAN, httr://www.skyscan.be
  9. Darahanau A V et.al. Phys. Lett. A 335 494(2005)

См. также[]

Литература[]

  • А. М. Василевский, М. А. Кропоткин, В. В. Тихонов. Оптическая электроника. Ленинград,Энергоатомиздат.1990.г. глава 3.

ca:Microscòpia da:Mikroskopi de:Mikroskopie en:Microscopy es:microscopía fr:microscopie nl:microscopie