- https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B7%D0%B2%D0%B5%D0%B7%D0%B4%D0%B0
- http://www.astronet.ru/db/msg/1188472
Нейтро́нная звезда́ — космическое тело, являющееся одним из возможных результатов эволюции звёзд, состоящее, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8×1017 кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.
Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, — до нескольких сотен оборотов в секунду. Нейтронные звёзды возникают в результате вспышек сверхновых звёзд.
Общие сведения[]
Среди нейтронных звёзд с надёжно измеренными массами большинство попадает в интервал от 1,3 до 1,5 масс Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс, однако значение верхней предельной массы в настоящее время известно весьма неточно. Самые массивные нейтронные звёзды из известных — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %)[1], PSR J1614-2230 ruen (с оценкой массы 1,97±0,04 солнечных)[2][3][4], и PSR J0348+0432 ruen (с оценкой массы 2,01±0,04 солнечных). Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.[5]
Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013 Гс (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. C 1990-х годов некоторые нейтронные звёзды отождествлены как магнетары — звёзды, обладающие магнитными полями порядка 1014 Гс и выше.
Такие магнитные поля (превышающие «критическое» значение 4,414×1013 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя, mec²) привносят качественно новое в физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.
К 2015 году открыто более 2500 нейтронных звёзд. Порядка 90 % из них — одиночные. Всего же в нашей Галактике могут существовать 108—109 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака нейтронная звезда может быть в этой ситуации видна с Земли в разных спектральных диапазонах, включая оптический, на который приходится около 0,003 % излучаемой энергии (соответствует 10 звёздной величине).[6]
История открытия[]
Нейтронные звёзды — одни из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.
В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронная звёзда может образоваться в результате взрыва сверхновой. Теоретические расчёты показали, что излучение нейтронной звезды слишком слабое, чтобы её можно было обнаружить при помощи астрономических инструментов того времени. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия, так как теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты в радионаблюдениях. В 1967 году Джоселин Белл, аспирантка Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта — своеобразный «космический радиомаяк». Но любая обычная звёзда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.
Классификация нейтронных звёзд[]
Взаимодействие нейтронной звезды с окружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В. М. Липунова.[7] Поскольку теория магнитосфер пульсаров всё ещё в состоянии развития, существуют альтернативные теоретические модели (см. недавний обзор[8] и ссылки там).
Эжектор (радиопульсар)[]
Сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвёздное пространство. Нейтронная звезда данного типа «эжектирует» (от фр. éjecter — извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.
«Пропеллер»[]
Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.
Аккретор (рентгеновский пульсар)[]
Скорость вращения снижается настолько, что веществу теперь ничего не препятствует падать на такую нейтронную звезду. Падая, вещество, уже будучи в состоянии плазмы, движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды в районе её полюсов, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала — всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, поэтому наблюдаются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.
Георотатор[]
Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм работает в магнитосфере Земли, из-за чего данный тип нейтронных звёзд и получил своё название.
См. также[]
- Нейтронизация
- Блицар
- Великолепная семёрка (астрономия)
- Кварковая звезда
- Магнетар
Примечания[]
- ↑ H. Quaintrell и др. The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel // Astronomy and Astrophysics. — апрель 2003. — № 401. — С. 313—323.
- ↑ P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts & J. W. T. Hessels A two-solar-mass neutron star measured using Shapiro delay // Nature. — 2010. — Т. 467. — С. 1081—1083.
- ↑ Шаблон:News
- ↑ «Сверхтяжелая» нейтронная звезда отрицает теорию «свободных» кварков. РИА Новости (29 октября 2010). Проверено 30 октября 2010. Архивировано из первоисточника 16 октября 2012.
- ↑ Рождению странных звезд помогает темная материя? Elementy.ru, 2010
- ↑ [1] Е. Шиховцев. Визит нейтронной звезды, 2013
- ↑ В. М. Липунов. Астрофизика нейтронных звёзд. — Наука. — 1987. — С. 90. (см. ISBN )
- ↑ Бескин В.С., Истомин Я.Н., Филиппов А.А. Радиопульсары — поиски истины // Успехи физических наук. — 2013. — Т. 183. — № 10. — С. 179–194.
Литература[]
- Шапиро С. Л., Тьюколски С. А. Черные дыры, белые карлики и нейтронные звезды / Пер. с англ. под ред. Я. А. Смородинского. — М.: Мир, 1985. — Т. 1—2. — 656 с. (см. ISBN )
- С. Б. Попов, М. Е. Прохоров. Астрофизика одиночных нейтронных звёзд: радиотихие нейтронные звезды и магнитары. — ГАИШ МГУ, 2002.
- Haensel P., Potekhin A.Y., Yakovlev D.G. Neutron Stars. — N. Y.: Springer, 2007. — Т. 1. — 619 с. — ISBN 978-0-387-33543-8. (см. ISBN )
- А. Ю. Потехин. Физика нейтронных звёзд // УФН. — 2010. — Т. 180. — С. 1279—1304.
Ссылки[]
|
|
- Страница 0 - краткая статья
- Страница 1 - энциклопедическая статья
- Разное - на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Нейтронная звезда 1», чтобы сохранить ее