Наука
Наука
Advertisement
Уран(U)
Атомный номер 92
Внешний вид Файл:HEUranium.jpg
Свойства атома
Атомная масса
(молярная масса)
238.0289 а. е. м. (г/моль)
Радиус атома 138 пм
Энергия ионизации
(первый электрон)
686,4(7,11) кДж/моль (эВ)
Электронная конфигурация [Rn] 5f3 6d1 7s2
Химические свойства
Ковалентный радиус 142 пм
Радиус иона (+6e) 80 (+4e) 97 пм
Электроотрицательность
(по Полингу)
1,38
Электродный потенциал U←U4+ -1,38В
U←U3+ -1,66В
U←U2+ -0,1В
Степени окисления 6, 5, 4, 3
Термодинамические свойства
Плотность 19,05 г/см³
Удельная теплоёмкость 0,115 Дж/(K·моль)
Теплопроводность 27,5 Вт/(м·K)
Температура плавления 1405,5 K
Теплота плавления 12,6 кДж/моль
Температура кипения 4018 K
Теплота испарения 417 кДж/моль
Молярный объём 12,5 см³/моль
Кристаллическая решётка
Структура решётки орторомбическая
Период решётки 2,850 Å
Отношение c/a n/a
Температура Дебая n/a K

Ура́нхимический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (лат. Uranium), относится к семейству актиноидов.

История[]

Ещё в древнейшие времена (I век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики.

Уран был открыт в 1789 году немецким химиком Мартином Генрихом Клапротом (Klaproth) при исследовании минерала настуран («урановая смолка»). Назван им в честь планеты Уран, открытой Уильямом Гершелем в 1781 году. В металлическом состоянии уран получен в 1841 французским химиком Эженом Пелиго при восстановлении UCl4 металлическим калием. Радиоактивные свойства урана обнаружил в 1896 француз Анри Беккерель.

Первоначально урану приписывали атомную массу 116, но в 1871 году Д. И. Менделеев пришёл к выводу, что её надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г. Сиборг пришёл к выводу, что эти элементы (актиноиды) правильнее располагать в периодической системе в одной клетке с элементом № 89 актинием. Такое расположение связано с тем, что у актиноидов происходит достройка 5f-электронного подуровня.

Нахождение в природе[]

Файл:UraniumUSGOV.jpg

Уранинитовая руда

Уран — характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5·10−4% по массе. В морской воде концентрация урана менее 10−9 г/л, всего в морской воде содержится от 109 до 1010 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них настуран U3O8, уранинит (U, Th)O2, урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO2)2(VO4)2]·8H2O.

Изотопы[]

Природный уран состоит из смеси трёх изотопов: 238U — 99,2739 %, период полураспада T1/2 = 4,51×109 лет, 235U — 0,7024 % (T1/2 = 7,13×108 лет) и 234U — 0,0057 % (T1/2 = 2,48×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.

Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.

Известно 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240. Наиболее долгоживущий из них — 233U (T1/2 = 1,62×105лет) получается при облучении тория нейтронами.

Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов.

Получение[]

Самая первая стадия уранового производства — концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия — выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое — дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке, уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы — экстракция и ионный обмен — позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана — десятые доли грамма на литр).

После этих операций уран переводят в твердое состояние — в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов — бора, кадмия, лития, редких земель. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2.

На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

Физические свойства[]

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667,7 °C), бета (четырехугольная, стабильна от 667,7 °C до 774,8 °C), гамма (с объёмно центрированной кубической структурой, существующей от 774,8 °C до точки плавления).

Химические свойства[]

Химическая активность металлического урана высока. На воздухе он покрывается радужной плёнкой оксида. Как и другие металлы, порошкообразный уран пирофорен - самовозгорается при температуре 150—175 °C. При сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U3O8. Если этот оксид нагревать в атмосфере водорода при температуре выше 500 °C, образуется диоксид урана UO2. При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К2UO4 (уранат калия), СаUO4 (уранат кальция), Na2U2O7 (диуранат натрия).

Взаимодействуя с галогенами, уран даёт галогениды урана. Известны фториды и хлориды, отвечающие степеням окисления урана +3, +4, +5 и +6. Получены бромиды урана UBr3, UBr4 и UBr5, а также иодиды урана UI3 и UI4. Синтезированы оксигалогениды урана, такие, как UO2Cl2, UOCl2 и другие.

При взаимодействии урана с водородом образуется гидрид урана UH3, обладающий высокой химической активностью. При нагревании гидрид разлагается, образуя водород и порошкообразный уран.

При 1000 °C уран соединяется с азотом, образуя жёлтый нитрид урана. Получены следующие нитриды урана: UN, UN2, U2N3.

При спекании урана с бором возникают, в зависимости от молярного отношения реагентов и условий проведения процесса, бориды UB2, UB4 и UB12.

С углеродом уран образует три карбида UC, U2C3 и UC2.

Взаимодействием урана с кремнием получены силициды U3Si, U3Si2, USi, U3Si5, USi2 и U3Si2.

Получены фосфиды урана: UP, U3P4, UP2.

С серой уран образует ряд сульфидов: U3S5, US, US2, US3 и U2S3.

Металлический уран растворяется в HCl и HNO3, медленно реагирует с H2SO4 и H3PO4. Возникают соли, содержащие катион уранила UO22+.

В водных растворах существуют соединения урана в степенях окисления от +3 до +6. Ион U3+ в растворе неустойчив, ион U4+ стабилен в отсутствие воздуха. Катион UO2+ нестабилен и в растворе диспропорционируется на U4+ и UO22+. Ионы U3+ имеют характерную красную окраску, ионы U4+ — зелёную, ионы UO22+ — жёлтую.

В растворах наиболее устойчивы соединения урана в степени окисления +6. Все соединения урана в растворах склонны к гидролизу и комплексообразованию, наиболее сильно — катионы U4+ и UO22+.

Применение[]

Ядерное топливо[]

Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии (критическая масса около 48 кг). Выделение изотопа U235 из природного урана — сложная технологическая проблема, (см. разделение изотопов).

Изотоп U238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией).

В результате захвата нейтрона с последующим β-распадом 238U может превращаться в 239Pu, который затем используется как ядерное топливо.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг).

Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Другие сферы применения[]

  • Небольшая добавка урана придаёт красивый зеленовато-жёлтый оттенок стеклу [1].
  • Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело — водород + гексан).
  • Сплавы железа и обедненного урана (уран-238) применяются как мощные магнитострикционные материалы.
  • В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для получения тонированных фотографических отпечатков.

Обеднённый уран[]

После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него 234U. Из-за того, что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете «Боинг-747» содержится 1500 кг обедненного урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов[]

Самое известное применение обеднённого урана — в качестве сердечников для бронебойных снарядов. При сплавлении с 2 % Mo или 0,75 % Ti и термической обработке (быстрая закалка разогретого до 850 °C металла в воде или масле, дальнейшее выдерживание при 450 °C 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони. Около 300 тонн обедненного урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10, каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Обеднённый уран используется в современной танковой броне, например, танка M-1 «Абрамс».

Физиологическое действие[]

В микроколичествах (10−5—10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких — 50 %. Основные депо в организме: селезенка, почки, скелет, печень, легкие и бронхо-легочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г.

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м3, для нерастворимых форм урана ПДК 0,075 мг/м3. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Добыча урана в мире[]

Файл:KarteUrangewinnung.png

10 стран, ответственных за 94 % мировой добычи урана

Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41250 тонн урана (в 2003 — 35492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок).

Добыча по странам в тоннах по содержанию U на 2005—2006 гг.

Страна 2005 год
Канада 11410
Австралия 9044
Казахстан 4020
Россия 3570
США 1249
Украина 920
Китай 920

Добыча в России[]

На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав корпорации «ТВЭЛ».

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

На территории России (в Якутии) находится Эльконское урановое месторождение — самое богатое из разведанных месторождений в России, на него приходится более половины разведанных запасов урана в стране — около 344 тыс. тонн и считающееся одними из крупнейших в мире. Оно разделено на 8 лицензионных участков, один из которых — зона «Южная», запасы урана которой оцениваются на уровне свыше 250 тыс. тонн.

См. также[]

  • Разделение изотопов
  • Ядерное топливо

Ссылки[]


Периодическая система элементов
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

als:Uran ar:يورانيوم az:Uran (element) be:Уран (хімічны элемент) bg:Уран (елемент) bs:Uranijum ca:Urani co:Uraniu cs:Uran (prvek) da:Uran de:Uran el:Ουράνιο en:Uranium eo:Uranio es:Uranio et:Uraan fa:اورانیوم fi:Uraani fr:Uranium he:אורניום hr:Uranij hu:Urán hy:Ուրան (տարր) id:Uranium io:Uranio is:Úran it:Uranio ja:ウラン jbo:jinmrvurani ko:우라늄 la:Uranium lb:Uran lt:Uranas (chemija) lv:Urāns (elements) nl:Uranium nn:Uran no:Uran pl:Uran (pierwiastek) pt:Urânio scn:Uraniu sh:Uranijum simple:Uranium sk:Urán (prvok) sl:Uran sq:Urani (kimi) sr:Уранијум sv:Uran ta:யுரேனியம் th:ยูเรเนียม tl:Uranyo tr:Uranyum ug:ئۇران (مېتلا) uk:Уран (хімічний елемент) vi:Urani zh:鈾



  1. Википедия Уран (элемент) адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Уран (элемент) и найти в:

  1. Вокруг света (элемент) адрес
  2. Академик (элемент)/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы (элемент)+&search адрес
  5. Научная Россия (элемент)&mode=2&sort=2 адрес
  6. Кругосвет (элемент)&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнание(элемент) адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Уран (элемент) 1», чтобы сохранить ее

Комментарии читателей:[]

Advertisement