Уран(U) | |
---|---|
Атомный номер | 92 |
Внешний вид | Файл:HEUranium.jpg |
Свойства атома | |
Атомная масса (молярная масса) |
238.0289 а. е. м. (г/моль) |
Радиус атома | 138 пм |
Энергия ионизации (первый электрон) |
686,4(7,11) кДж/моль (эВ) |
Электронная конфигурация | [Rn] 5f3 6d1 7s2 |
Химические свойства | |
Ковалентный радиус | 142 пм |
Радиус иона | (+6e) 80 (+4e) 97 пм |
Электроотрицательность (по Полингу) |
1,38 |
Электродный потенциал | U←U4+ -1,38В U←U3+ -1,66В U←U2+ -0,1В |
Степени окисления | 6, 5, 4, 3 |
Термодинамические свойства | |
Плотность | 19,05 г/см³ |
Удельная теплоёмкость | 0,115 Дж/(K·моль) |
Теплопроводность | 27,5 Вт/(м·K) |
Температура плавления | 1405,5 K |
Теплота плавления | 12,6 кДж/моль |
Температура кипения | 4018 K |
Теплота испарения | 417 кДж/моль |
Молярный объём | 12,5 см³/моль |
Кристаллическая решётка | |
Структура решётки | орторомбическая |
Период решётки | 2,850 Å |
Отношение c/a | n/a |
Температура Дебая | n/a K |
Ура́н — химический элемент с атомным номером 92 в периодической системе, атомная масса 238,029; обозначается символом U (лат. Uranium), относится к семейству актиноидов.
История[]
Ещё в древнейшие времена (I век до нашей эры) природная окись урана использовалась для изготовления жёлтой глазури для керамики.
Уран был открыт в 1789 году немецким химиком Мартином Генрихом Клапротом (Klaproth) при исследовании минерала настуран («урановая смолка»). Назван им в честь планеты Уран, открытой Уильямом Гершелем в 1781 году. В металлическом состоянии уран получен в 1841 французским химиком Эженом Пелиго при восстановлении UCl4 металлическим калием. Радиоактивные свойства урана обнаружил в 1896 француз Анри Беккерель.
Первоначально урану приписывали атомную массу 116, но в 1871 году Д. И. Менделеев пришёл к выводу, что её надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г. Сиборг пришёл к выводу, что эти элементы (актиноиды) правильнее располагать в периодической системе в одной клетке с элементом № 89 актинием. Такое расположение связано с тем, что у актиноидов происходит достройка 5f-электронного подуровня.
Нахождение в природе[]
Уран — характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5·10−4% по массе. В морской воде концентрация урана менее 10−9 г/л, всего в морской воде содержится от 109 до 1010 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них настуран U3O8, уранинит (U, Th)O2, урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO2)2(VO4)2]·8H2O.
Изотопы[]
Природный уран состоит из смеси трёх изотопов: 238U — 99,2739 %, период полураспада T1/2 = 4,51×109 лет, 235U — 0,7024 % (T1/2 = 7,13×108 лет) и 234U — 0,0057 % (T1/2 = 2,48×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.
Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.
Известно 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240. Наиболее долгоживущий из них — 233U (T1/2 = 1,62×105лет) получается при облучении тория нейтронами.
Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов.
Получение[]
Самая первая стадия уранового производства — концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).
Следующая стадия — выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое — дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке, уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.
Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия).
Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.
На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы — экстракция и ионный обмен — позволяют решить эту проблему.
Раствор содержит не только уран, но и другие катионы. Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.
Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана — десятые доли грамма на литр).
После этих операций уран переводят в твердое состояние — в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов — бора, кадмия, лития, редких земель. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2.
На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.
Физические свойства[]
Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667,7 °C), бета (четырехугольная, стабильна от 667,7 °C до 774,8 °C), гамма (с объёмно центрированной кубической структурой, существующей от 774,8 °C до точки плавления).
Химические свойства[]
Химическая активность металлического урана высока. На воздухе он покрывается радужной плёнкой оксида. Как и другие металлы, порошкообразный уран пирофорен - самовозгорается при температуре 150—175 °C. При сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U3O8. Если этот оксид нагревать в атмосфере водорода при температуре выше 500 °C, образуется диоксид урана UO2. При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К2UO4 (уранат калия), СаUO4 (уранат кальция), Na2U2O7 (диуранат натрия).
Взаимодействуя с галогенами, уран даёт галогениды урана. Известны фториды и хлориды, отвечающие степеням окисления урана +3, +4, +5 и +6. Получены бромиды урана UBr3, UBr4 и UBr5, а также иодиды урана UI3 и UI4. Синтезированы оксигалогениды урана, такие, как UO2Cl2, UOCl2 и другие.
При взаимодействии урана с водородом образуется гидрид урана UH3, обладающий высокой химической активностью. При нагревании гидрид разлагается, образуя водород и порошкообразный уран.
При 1000 °C уран соединяется с азотом, образуя жёлтый нитрид урана. Получены следующие нитриды урана: UN, UN2, U2N3.
При спекании урана с бором возникают, в зависимости от молярного отношения реагентов и условий проведения процесса, бориды UB2, UB4 и UB12.
С углеродом уран образует три карбида UC, U2C3 и UC2.
Взаимодействием урана с кремнием получены силициды U3Si, U3Si2, USi, U3Si5, USi2 и U3Si2.
Получены фосфиды урана: UP, U3P4, UP2.
С серой уран образует ряд сульфидов: U3S5, US, US2, US3 и U2S3.
Металлический уран растворяется в HCl и HNO3, медленно реагирует с H2SO4 и H3PO4. Возникают соли, содержащие катион уранила UO22+.
В водных растворах существуют соединения урана в степенях окисления от +3 до +6. Ион U3+ в растворе неустойчив, ион U4+ стабилен в отсутствие воздуха. Катион UO2+ нестабилен и в растворе диспропорционируется на U4+ и UO22+. Ионы U3+ имеют характерную красную окраску, ионы U4+ — зелёную, ионы UO22+ — жёлтую.
В растворах наиболее устойчивы соединения урана в степени окисления +6. Все соединения урана в растворах склонны к гидролизу и комплексообразованию, наиболее сильно — катионы U4+ и UO22+.
Применение[]
Ядерное топливо[]
Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии (критическая масса около 48 кг). Выделение изотопа U235 из природного урана — сложная технологическая проблема, (см. разделение изотопов).
Изотоп U238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией).
В результате захвата нейтрона с последующим β-распадом 238U может превращаться в 239Pu, который затем используется как ядерное топливо.
Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг).
Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.
Другие сферы применения[]
- Небольшая добавка урана придаёт красивый зеленовато-жёлтый оттенок стеклу [1].
- Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело — водород + гексан).
- Сплавы железа и обедненного урана (уран-238) применяются как мощные магнитострикционные материалы.
- В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для получения тонированных фотографических отпечатков.
Обеднённый уран[]
После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).
Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него 234U. Из-за того, что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.
В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете «Боинг-747» содержится 1500 кг обедненного урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.
Сердечники бронебойных снарядов[]
Самое известное применение обеднённого урана — в качестве сердечников для бронебойных снарядов. При сплавлении с 2 % Mo или 0,75 % Ti и термической обработке (быстрая закалка разогретого до 850 °C металла в воде или масле, дальнейшее выдерживание при 450 °C 5 часов) металлический уран становится твёрже и прочнее стали (прочность на разрыв больше 1600 МПа, при том, что у чистого урана она равна 450 МПа). В сочетании с большой плотностью, это делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому вольфраму. Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони. Около 300 тонн обедненного урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10, каждый снаряд содержит 272 г уранового сплава).
Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.
Обеднённый уран используется в современной танковой броне, например, танка M-1 «Абрамс».
Физиологическое действие[]
В микроколичествах (10−5—10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких — 50 %. Основные депо в организме: селезенка, почки, скелет, печень, легкие и бронхо-легочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г.
Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м3, для нерастворимых форм урана ПДК 0,075 мг/м3. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.
Добыча урана в мире[]
Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41250 тонн урана (в 2003 — 35492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок).
Добыча по странам в тоннах по содержанию U на 2005—2006 гг.
Страна | 2005 год |
Канада | 11410 |
Австралия | 9044 |
Казахстан | 4020 |
Россия | 3570 |
США | 1249 |
Украина | 920 |
Китай | 920 |
Добыча в России[]
На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав корпорации «ТВЭЛ».
Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).
Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.
На территории России (в Якутии) находится Эльконское урановое месторождение — самое богатое из разведанных месторождений в России, на него приходится более половины разведанных запасов урана в стране — около 344 тыс. тонн и считающееся одними из крупнейших в мире. Оно разделено на 8 лицензионных участков, один из которых — зона «Южная», запасы урана которой оцениваются на уровне свыше 250 тыс. тонн.
См. также[]
- Разделение изотопов
- Ядерное топливо
Ссылки[]
H | He | ||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup | Uuh | Uus | Uuo | ||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||||||||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
als:Uran ar:يورانيوم az:Uran (element) be:Уран (хімічны элемент) bg:Уран (елемент) bs:Uranijum ca:Urani co:Uraniu cs:Uran (prvek) da:Uran de:Uran el:Ουράνιο en:Uranium eo:Uranio es:Uranio et:Uraan fa:اورانیوم fi:Uraani fr:Uranium he:אורניום hr:Uranij hu:Urán hy:Ուրան (տարր) id:Uranium io:Uranio is:Úran it:Uranio ja:ウラン jbo:jinmrvurani ko:우라늄 la:Uranium lb:Uran lt:Uranas (chemija) lv:Urāns (elements) nl:Uranium nn:Uran no:Uran pl:Uran (pierwiastek) pt:Urânio scn:Uraniu sh:Uranijum simple:Uranium sk:Urán (prvok) sl:Uran sq:Urani (kimi) sr:Уранијум sv:Uran ta:யுரேனியம் th:ยูเรเนียม tl:Uranyo tr:Uranyum ug:ئۇران (مېتلا) uk:Уран (хімічний елемент) vi:Urani zh:鈾
- Страница 0 - краткая статья
- Страница 1 - энциклопедическая статья
- Разное - на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Уран (элемент) 1», чтобы сохранить ее