Наука
Наука
Advertisement
Accel

Если движение точки прямолинейно, можно построить график зависимости скорости от времени. При этом величина ускорения будет равна тангенсу угла наклона касательной к графику в указанной точке.

Ускоре́ние (обычно обозначается , в теоретической механике ), производная скорости по времени — векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с².

Раздел механики, изучающий движение в трёхмерном евклидовом пространстве, его запись, а также запись скоростей и ускорений в различных системах отсчёта, называется кинематикой.

Единицей ускорения служит метр в секунду за секунду (m/s2, м/с2), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с2.

Производная ускорения по времени т.е. величина, характеризующая быстроту изменения ускорения по времени называется рывок.

Кинематика точки[]

Вектор ускорения материальной точки в любой момент времени находится путём дифференцирования вектора скорости материальной точки по времени:

.

Ускорение точки при прямолинейном движении[]

Если вектор не меняется со временем, движение называют равноускоренным. При равноускоренном движении справедливы формулы:

.

Частным случаем равноускоренного движения является случай, когда ускорение равно нулю в течение всего времени движения. В этом случае скорость постоянна, а движение происходит по прямолинейной траектории (если скорость тоже равна нулю, то тело покоится), поэтому такое движение называют прямолинейным и равномерным.

Равноускоренное движение точки всегда является плоским, а твёрдого тела — плоскопараллельным (поступательным). (Обратное, вообще говоря, не верно)

Ускорение точки при движении по окружности[]

w = wτ + wn

Тангенциальное ускорение — направлено по касательной к траектории, обозначается wτ (aτ). Является составляющей вектора ускорения a. Характеризует изменение скорости по модулю.

Центростремительное или Нормальное ускорение — возникает при движении точки по окружности, обозначается wn. Является составляющей вектора ускорения w. Вектор нормального ускорения всегда направлен к центру окружности, а модуль равен:

Угловое ускорение — показывает, на сколько изменилась угловая скорость за единицу времени, и, по аналогии с линейным ускорением, равно:

Направление вектора здесь показывает, увеличивается или уменьшается модуль скорости. Если векторы углового ускорения и скорости сонаправлены, значение скорости растёт, и наоборот.

Ускорение точки при движении по кривой[]

Acceleration 1

Разложение ускорения по сопутствующему базису для движения в плоскости

Вектор ускорения можно разложить по сопутствующему базису :

,

где

  • величина скорости,
  • — единичный касательный к траектории вектор, направленный вдоль скорости (касательный орт),
  • — орт нормали к траектории,
  • — орт бинормали к траектории,
  • радиус кривизны траектории.

Известно, что , называемое бинормальным ускорением, всегда равно нулю.

Векторы и называются касательным (тангенциальным) и нормальным ускорениями соответственно.

Ускорения в твёрдом теле[]

Связь ускорений двух точек можно получить, продифференцировав формулу Эйлера для скоростей по времени:

,

где — вектор угловой скорости тела, а — вектор углового ускорения тела.

Второе слагаемое называется осестремительным ускорением.

Ускорение при сложном движении[]

Абсолютное ускорение равно сумме относительного, переносного и кориолисова:

.

Динамика точки[]

Первый закон Ньютона постулирует существование инерциальных систем отсчета. В этих системах отсчета равномерное прямолинейное движение имеет место всякий раз, когда тело (материальная точка) не подвергается никаким внешним воздействиям в процессе своего движения. На основе этого закона возникает ключевое для механики понятие силы как такого внешнего воздействия на тело, которое выводит его из состояния покоя или влияет на скорость его движения. Таким образом постулируется, что причиной возникновения ненулевого ускорения в инерциальной системе отсчета всегда является некоторое внешнее силовое воздействие.

Второй закон Ньютона утверждает, что приложенная (к точке) сила и порождаемое ей ускорение точки всегда пропорциональны, причём коэффициент пропорциональности всегда один и тот же независимо от вида силового воздействия (он называется массой материальной точки):

.

Единицы измерения ускорения[]

См. также[]


Wiki letter w
Для улучшения этой статьи желательно?:
Advertisement