Наука
Advertisement
Список чисел
Иррациональные числа
ζ(3)√2√3√5φαeπδ
Giperbola E

Область под графиком y = 1/x равна 1 интервалу 1 ≤ xe.

E - tshislo

e - это некоторое число a, такое, что значение производной (наклон линии тангенса) показательной функции f (x) = ax (синяя кривая) в точке x = 0 равно 1. Для сравнения показаны функция 2x (точечная кривая) и 4x (пунктирная кривая); тангенс к линии наклона не равен 1 (красная).

eматематическая константа, основание натурального логарифма, иррациональное и трансцендентное число. Иногда число e называют числом Эйлера (не путать с т. н. числами Эйлера I рода) или числом Непера. Обозначается строчной латинской буквой «e».


Играет важную роль в дифференциальном и интегральном исчислении, а также многих других разделах математики.

2,718 281 828 459 045 235 360 287 471 352 662 497 757…[1]

Способы определения[]

Число e может быть определено несколькими способами.

  • Через предел:
    (второй замечательный предел).
  • Как сумма ряда:
    или .
  • Как единственное число a, для которого выполняется
  • Как единственное положительное число a, для которого верно

Свойства[]


  • Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравнения является функция , где c — произвольная константа.
  • Число e иррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 году Шарлем Эрмитом. Предполагается, что eнормальное число, то есть вероятность появления разных цифр в его записи одинакова.
  • , см. формула Эйлера, в частности
  • Ещё одна формула, связывающая числа е и π, т. н. «интеграл Пуассона» или «интеграл Гаусса»
  • Для любого комплексного числа z верны следующие равенства:
  • Число e разлагается в бесконечную цепную дробь следующим образом:
    , то есть
  • Представление Каталана:

История[]

Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен .

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).

Предполагается, что автором таблицы был английский математик Отред.

Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 16901691 годы.

Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler)[источник не указан 5596 дней].

Мнемоника[]

  • Приблизительное значение зашифровано в: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли» (нужно выписать подряд цифры, выражающие число букв в словах следующего стишка, и поставить запятую после первого знака)
  • Запомнить как 2, 71, и повторяющиеся 82, 81, 82
  • Мнемоническое правило: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45, 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой»
  • Цифры 45, 90 и 45 можно запоминать как «год победы над фашистской Германией, затем дважды этот год и снова он»
  • Правила e связывается с президентом США Эндрю Джексоном: 2 — столько раз избирался, 7 — он был седьмым президентом США, 1828 — год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем — опять-таки равнобедренный прямоугольный треугольник.
  • С точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки): .
  • Запоминание e как .
  • Грубое (с точностью до 0,001), но красивое приближение полагает e равным . Совсем грубое (с точностью 0,01) приближение даётся выражением .
  • «Правило Боинга»: даёт неплохую точность 0,0005.
  • Стишки:
Два и семь, восемнадцать,
Двадцать восемь, восемнадцать,
Двадцать восемь, сорок пять,
Девяносто, сорок пять.

Доказательство иррациональности[]

Пускай рационально. Тогда , где и целые положительные, откуда

Умножая обе части уравнения на , получаем

Переносим в левую часть:

Все слагаемые правой части целые, следовательно:

- целое

Но с другой стороны

Получаем противоречие.

Интересные факты[]

  • В IPO компании Google в 2004 году было объявлено о намерении компании увеличить свою прибыль на 2 718 281 828 долларов. Заявленная цифра представляет собой первые 10 цифр известной математической константы.
  • В языках программирования символу в экспоненциальных записях числовых литералов соответствует число 10, а не Эйлерово число. Это связано с историей создания и использования языка для математических вычислений FORTRAN[2]:

Я начал программировать в 1960 году на FORTRAN II, используя компьютер IBM 1620. В то время, в 60-е и 70-е годы, FORTRAN использовал только заглавные буквы. Возможно, это произошло потому, что большинство старых устройств ввода были телетайпами, работавшими с 5-битовым кодом Бодо, который не поддерживал строчные буквы. Буква E в экспоненциальной записи тоже была заглавной и не смешивалась с основанием натурального логарифма , которое всегда записывается маленькой буквой. Символ E просто выражал экспоненциальный характер, то есть обозначал основание системы — обычно таким было 10. В те годы программисты широко использовали восьмеричную систему. И хотя я не замечал такого, но если бы я увидел восьмеричное число в экспоненциальной форме, я бы предположил, что имеется в виду основание 8. Первый раз я встретился с использованием маленькой в экспоненциальной записи в конце 70-х годов, и это было очень неудобно. Проблемы появились потом, когда строчные буквы по инерции перешли в FORTRAN. У нас существовали все нужные функции для действий с натуральными логарифмами, но все они записывались прописными буквами.

Таким образом, записи типа 7.38e-43 в языках программирования будет соответствовать число , а не .

Примечания[]

  1. 2 миллиона цифр после запятой
  2. Эккель Б. Философия Java = Thinking in Java. — 4-е изд. — СПб.: Питер, 2009. — С. 84. — (Библиотека программиста). — ISBN 978-5-388-00003-3. (см. ISBN )

См. также[]

  • Список объектов, названных в честь Леонарда Эйлера

Ссылки[]

Числа с собственными именами
Вещественные Золотое сечение • e (число Эйлера) • Пи • Число Скьюза
Натуральные Чёртова дюжина • Число зверя • Число Рамануджана — Харди
Степени десяти Мириада • Гугол • Асанкхейя • Гуголплекс
Степени тысячи Тысяча • Миллион • Миллиард • Биллион • Триллион … • … Центиллион • Зиллион
Степени двенадцати Дюжина • Гросс • Масса
Двенадцатеричная система счисления Литературные  • меры счёта  • Доцанд • Мириад

an:Numero e ar:عدد نيبيري bg:Неперово число bn:E (গাণিতিক ধ্রুবক) bs:E (broj) ca:Nombre e cs:Eulerovo číslo da:E (tal) de:Eulersche Zahl el:Αριθμός e (μαθηματικά) en:E (mathematical constant) eo:E (matematiko) es:Número e et:E (arv) eu:E (zenbakia) fa:عدد e fi:Neperin luku fr:E (nombre) gl:Número e he:E (קבוע מתמטי) hr:Broj e hu:Euler-féle szám ia:E (constante mathematic) id:E (konstanta matematika) is:E (stærðfræðilegur fasti) it:E (costante matematica) ja:ネイピア数 ko:E (상수) la:Numerus Euleri lt:Skaičius e mk:Е (број) nl:E (wiskunde) nn:E i matematikk no:E (matematikk) pl:Podstawa logarytmu naturalnego pt:Número de Euler ro:E (constantă matematică) si:E (ගණිත නියතය) simple:E (mathematical constant) sk:Eulerovo číslo sl:E (matematična konstanta) sq:Numri e sr:Број е sv:E (tal) ta:E (கணித மாறிலி) th:E (ค่าคงตัว) tr:E sayısı uk:E (число) ur:E (ریاضیاتی دائم) vi:Số e zh:E (数学常数)

Advertisement